
NEST Desktop

Dec 13, 2021

Contents

1 NEST Desktop 1

2 Abstract 3

3 History 5

4 Releases 7

5 How to use NEST Desktop 11

6 Setup Guide 13
6.1 Via Docker Compose . 15
6.2 Via Singularity . 16
6.3 Via Python Package . 16

7 Usage Guide 19
7.1 Construct neuronal networks . 20
7.2 Simulate neuronal networks . 23
7.3 Explore network activity . 25
7.4 Manage projects . 27
7.5 Explore neuron models and devices . 28

8 Troubleshootings 31
8.1 Error messages . 31
8.2 Frequently asked questions (FAQ) . 32

9 Use NEST Desktop on EBRAINS 37

10 How to lecture with NEST Desktop 39

11 Course design 41

12 Didactic concept 43

13 First steps toward simulating brains 45

14 How to prepare a course protocol 47

i

15 Bachelor students 49
15.1 Direct current injection into single neurons . 49
15.2 Noise current injection into single neurons . 50
15.3 Excitatory and inhibitory synaptic input into single neurons . 50
15.4 Poisson input into single neurons . 51

16 Master students 53
16.1 The Hodgkin-Huxley theory of the action potential . 53
16.2 Point neuron models with conductance-based synapses . 55
16.3 Network dynamics . 56

17 Doctoral students 59
17.1 Network models of decision making . 59

18 How to deploy NEST Desktop 61

19 Deploy with Docker Compose 63

20 Deploy on OpenShift 67

21 Deploy on OpenStack 71

22 How to develop NEST Desktop 73

23 Prepare the environment 75

24 Work on the source code 77

25 Build and publish package 79

26 Command API 81

27 User documentation 83

28 The semantic versioning 85

29 Concept of the interface 87

30 References 89

Bibliography 91

ii

CHAPTER 1

NEST Desktop

Hello there! :-)

NEST Desktop is a web-based GUI application for NEST Simulator, an advanced simulation tool for the computational
neuroscience.

The app enables the rapid construction, parametrization, and instrumentation of neuronal network models.

1

NEST Desktop

It’s so great that you want to use NEST Desktop!

The documentation is organized in four sections. Select the appropriate section that fits your needs.

2 Chapter 1. NEST Desktop

CHAPTER 2

Abstract

NEST Desktop - An educational application for neuroscience

Simulation software for spiking neuronal network models matured in the past decades regarding performance and
flexibility. Nevertheless, the entry barrier remains high for students and early career scientists in computational neu-
roscience since these simulators typically require programming skills and a complex installation. Here, we describe
an installation-free graphical user interface (GUI) running in the web browser, which is distinct from the simulation
engine running anywhere, on the student’s laptop or on a supercomputer. This architecture provides robustness against
technological changes in the software stack and simplifies the deployment for process for students/autodidacts and for
teachers. Our new open source tool, NEST Desktop1, comprises graphical elements for creating and configuring net-
work models, running simulations, as well as for visualizing and analyzing the results. NEST Desktop allows students
to explore important concepts in computational neuroscience without the need to learn a simulator control language
before. Our experiences so far highlight that NEST Desktop helps advancing both quality and intensity of teaching in
computational neuroscience in regular university courses. We view the availability of the tool on public resources like
the European ICT infrastructure for neuroscience EBRAINS as a contribution to equal opportunities2.

A preprint for NEST Desktop is available on bioRxiv.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and
Innovation under Specific Grant Agreement No. 785907 (Human Brain Project SGA2) and No. 945539 (Human
Brain Project SGA3). This project was funded by the Helmholtz Association Initiative and Networking Fund under
project number SO-092 (Advanced Computing Architectures, ACA). This work was supported by the DFG Excellence
Cluster BrainLinks-BrainTools (grant EXC 1086).

Cite NEST Desktop In order to cite NEST Desktop in general, please use the DOI [10.5281/zenodo.5037050](https:
//doi.org/10.5281/zenodo.5037050) for all versions (always redirecting to the latest version). If you like to re-
fer to a single version, you can find these also on Zenodo, e.g. [10.5281/zenodo.5037051](https://doi.org/10.
5281/zenodo.5037051) for Version 3.0.0. You can use the reference to the preprint for NEST Desktop (DOI:
10.1101/2021.06.15.444791) mentioned above as well, if that is more appropriate in the context of your reference.

You will also find the exports for the citation managers on Zenodo and bioRxiv.

1 https://github.com/nest-desktop/nest-desktop
2 https://ebrains.eu/service/nest-desktop

3

https://www.biorxiv.org/content/10.1101/2021.06.15.444791v1
https://doi.org/10.5281/zenodo.5037050
https://doi.org/10.5281/zenodo.5037050
https://doi.org/10.5281/zenodo.5037051
https://doi.org/10.5281/zenodo.5037051
https://doi.org/10.1101/2021.06.15.444791
https://github.com/nest-desktop/nest-desktop
https://ebrains.eu/service/nest-desktop

NEST Desktop

References

4 Chapter 2. Abstract

CHAPTER 3

History

2021

16 June Preprint on bioRxiv

03 - 07 May MSc course “Biophysics of Neurons and Networks” at [BCF], online (Freiburg, Germany).

08 - 09 April “NEST Desktop insitufication” on In-Situ Hackathon, online (HCI).

08 - 19 February BSc course “Simple Neuron Models” at [BCF], online, (Freiburg, Germany).

2020

30 Sep - 01 Oct Hand-on Session and Poster at Bernstein Conference 2020, online (Berlin, Germany).

18 - 22 July Tutorial with NESTML, presented by Dr. Linssen, at CNS 2020, online (Melbourne, Aus-
tralia).

29 - 30 June Talk “NEST Desktop” at NEST Conference at [NMBU], online (As, Norway).

02 - 17 June MSc course “Biophysics of Neurons and Networks” at [BCF], online (Freiburg, Germany).

16 April Presentation and demo at NeuroMat, online (Sao Paulo, Brazil).

03 - 06 February Talk and Demo/Hand-on session at HBP Summit and Open Days , Athene, Greece.

2019

28 November 2nd HPAC Platform Training, Heidelberg, Germany.

20 October Live demo, presented by Prof. Plesser, at HBP Booth at SfN, Chicago, USA.

18 - 20 September Poster/Live presentation at Bernstein Conference, Berlin, Germany.

22 July Talk and Tutorial/Hand-on session at [INM-6], Julich, Germany.

18 July NESTML/NEST-desktop integration workshop, [BCF], Freiburg, Germany.

24 - 25 June Talk and Tutorial/Hand-on session “NEST Desktop” at NEST Conference at [NMBU], As,
Norway.

16 April Kick-Off workshop at [HCI], Trier, Germany.

5

https://www.biorxiv.org/content/10.1101/2021.06.15.444791v1
https://abstracts.g-node.org/conference/BC20/abstracts#/uuid/f33d04d5-27fc-45b1-9d7a-44e2a0f28360
https://www.cnsorg.org/cns-2020-tutorials#T1
https://indico-jsc.fz-juelich.de/event/115/
https://neuromat.numec.prp.usp.br/content/nmweb/presentations/
https://summit2020.humanbrainproject.eu/
https://abstracts.g-node.org/conference/BC19/abstracts#/uuid/6444712d-2467-4e32-8464-a46a7387b4aa
https://indico-jsc.fz-juelich.de/event/92/material/0/0.pdf

NEST Desktop

25 - 31 March Tutorial workshop for IICCSSS at [BCF], Freiburg, Germany.

11 - 22 February BSc course “Simple Neuron Models” at [BCF], Freiburg, Germany.

2018

26 - 27 September Poster/Live presentation NEST Desktop at Bernstein Conference, Berlin, Germany.

27 - 28 August Technical meeting at [BCF], Freiburg, Germany.

25 - 26 June Talk “NEST Web API” at NEST Conference at [NMBU], As, Norway.

23 - 27 April MSc course “Biophysics of Neurons and Networks” at [BCF], Freiburg, Germany.

12 - 23 February BSc course “Simple Neuron Models” at [BCF], Freiburg, Germany.

2017

19 - 20 December Talk “NEST Desktop” at NEST Conference, Jülich, Germany.

20 - 22 November Live presentation with Ad Aertsen at Neural networks mini school, Strasbourg,
France.

02 - 05 May MSc course “Biophysics of Neurons and Networks” at [BCF], Freiburg, Germany.

24 January Talk (Informal Seminar) “NEST Desktop” at [BCF], Freiburg, Germany.

2016

December

• The start of the development of NEST Desktop.

6 Chapter 3. History

http://iiccsss.org/
https://abstracts.g-node.org/conference/BC18/abstracts#/uuid-2840bf9b-0d35-4002-ae80-0cb087abf8a8
https://indico-jsc.fz-juelich.de/event/71/material/3/2.pdf
https://indico-jsc.fz-juelich.de/event/52/material/2/0.pdf)
https://www.neurex.org/events/archives/item/304-neural-networks-meeting-mini-school
https://www.bcf.uni-freiburg.de/events/informal-seminar/announcements/170124_Spreizer.htm

CHAPTER 4

Releases

Jun 23, 2021 v3.0.0

Mar 4, 2021 v2.5.1

Oct 23, 2020 v2.5.0

Jul 15, 2020 v2.4.1

Jun 28, 2020 v2.4.0

May 23, 2020 v2.3.2

May 22, 2020 v2.3.1

May 22, 2020 v2.3.0

Jan 27, 2020 v2.2.15

Jan 27, 2020 v2.2.14

Jan 20, 2020 v2.2.13

Jan 16, 2020 v2.2.12

Dec 30, 2019 v2.2.11

Dec 4, 2019 v2.2.10

Dec 4, 2019 v2.2.9

Dec 3, 2019 v2.2.8

Nov 27, 2019 v2.2.7

Nov 27, 2019 v2.2.6

Nov 27, 2019 v2.2.5

Nov 24, 2019 v2.2.4

Nov 24, 2019 v2.2.3

Nov 24, 2019 v2.2.2

7

NEST Desktop

Nov 21, 2019 v2.2.1

Nov 8, 2019 v2.2.0

Nov 5, 2019 v2.1.3

Nov 5, 2019 v2.1.2

Nov 4, 2019 v2.1.1

Oct 29, 2019 v2.1.0

Oct 2, 2019 v2.0.7

Sep 30, 2019 v2.0.6

Sep 25, 2019 v2.0.5

Sep 25, 2019 v2.0.4

Sep 23, 2019 v2.0.3

Sep 16, 2019 v2.0.2

Sep 15, 2019 v2.0.1

Sep 13, 2019 v2.0.0

Sep 13, 2019 v2.0.0

Jul 23, 2019 v1.5

May 31, 2019 v1.4

Apr 19, 2019 v1.3

Mar 18, 2019 v1.2

Dec 18, 2018 v1.0

Apr 22, 2018 v0.15.3

Apr 17, 2018 v0.15.1

Feb 28, 2018 v0.15.0

Feb 28, 2018 v0.14.0

Feb 7, 2018 v0.13.0

Jan 29, 2018 v0.12.0

Nov 22, 2017 v0.11.0

Oct 6, 2017 v0.10.0

Jun 20, 2017 v0.9.3

Jun 20, 2017 v0.9.2

Apr 29, 2017 v0.9.1

Apr 28, 2017 v0.9.0

Apr 18, 2017 v0.8.2

Apr 12, 2017 v0.8.1

Apr 10, 2017 v0.8.0

Mar 23, 2017 v0.7.2

8 Chapter 4. Releases

NEST Desktop

Mar 15, 2017 v0.7.1

Mar 15, 2017 v0.7.0

Mar 4, 2017 v0.6.3

Feb 28, 2017 v0.6.2

Feb 27, 2017 v0.6.1

Feb 24, 2017 v0.6.0

Feb 9, 2017 v0.5.5

Feb 9, 2017 v0.5.4

Feb 7, 2017 v0.5.3

Feb 6, 2017 v0.5.2

Jan 23, 2017 v0.5.1

Jan 20, 2017 v0.5.0

Jan 9, 2017 v0.4.0

Jan 9, 2017 v0.3.12

Jan 5, 2017 v0.3.11

Jan 4, 2017 v0.3.10

Jan 4, 2017 v0.3.9

Jan 3, 2017 v0.3.8

Dec 29, 2016 v0.3.7

Dec 21, 2016 v0.3.6

Dec 21, 2016 v0.3.5

Dec 21, 2016 v0.3.4

Dec 20, 2016 v0.3.3

Dec 19, 2016 v0.3.1

Dec 19, 2016 v0.3.0

Dec 14, 2016 v0.2.1

Dec 14, 2016 v0.2.0

Dec 8, 2016 v0.1.0

9

NEST Desktop

10 Chapter 4. Releases

CHAPTER 5

How to use NEST Desktop

Quick start

The video shows the few steps to construct a network and explore its activity. For more information, please read
detailed guides of usage.

Getting started in Terminal with Docker-compose

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop/main/docker-compose.
→˓yml
docker-compose up --build

For more information, please read the detailed setup guides.

Guides for NEST Desktop

• How to setup NEST Desktop

• How to use NEST Desktop

• Troubleshooting

Guides for the infrastructure

• Use NEST Desktop on EBRAINS

11

NEST Desktop

12 Chapter 5. How to use NEST Desktop

CHAPTER 6

Setup Guide

This guide provides a detailed documentation on how to install NEST Desktop with NEST Simulator. The front end
NEST Desktop requires NEST Simulator as the back end for the simulation. NEST Simulator has an API Server which
can forward requests to the simulation engine. For more information, please have a look here.

13

https://nest-simulator.readthedocs.io/en/stable/nest_server.html

NEST Desktop

Docker (+ Docker Compose) and Singularity provide both NEST Desktop and NEST Simulator, so you have every-
thing you need to run NEST Desktop.

Alternatively, you can install NEST Desktop with the pip command. If you only have NEST Desktop (i.e., NEST
Simulator is not running as back-end), you can create networks but cannot run simulations within the application. To
enable the full functionality of NEST Desktop, you also need to install NEST Simulator on your computer and run
NEST Server.

See instructions below for details.

14 Chapter 6. Setup Guide

NEST Desktop

6.1 Via Docker Compose

Docker is a virtualization software packaging applications and its dependencies. Docker Compose is a tool for running
multi-container applications on Docker defined using the Compose file format. To get more information, see the
official page of Docker Compose.

Windows and macOS

Docker Compose is included in Docker Desktop for Windows and macOS. For more information take a look at the
installation guide of Docker Desktop.

Please keep in mind that on Windows you can also use the Windows Subsystem for Linux (WSL) version 2 or higher,
which allows you to run Docker without emulation. This offers performance advantages and more features. Detailed
instructions on how to use Docker on WSL (version 2+) are provided by Docker and Microsoft.

Quick setup in Linux

1. Install Docker and Docker Compose

apt install docker.io docker-compose

2. Get configuration file for Docker-compose (docker-compose.yml)

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop/main/docker-compose.
→˓yml

3. Build and start NEST Desktop and NEST Simulator with a single command:

sudo docker-compose up --build

Now NEST Desktop is started. You can use NEST Desktop in the web browser at http://localhost:8000.

The installation is now complete! Now we can start constructing networks for the simulation!

6.1. Via Docker Compose 15

https://github.com/docker/compose
https://www.docker.com/get-started
https://docs.docker.com/desktop/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers
https://raw.githubusercontent.com/nest-desktop/nest-desktop/main/docker-compose.yml
http://localhost:8000

NEST Desktop

Note: For more information (like running the containers without root password, etc.), please read the full documen-
tation of NEST Desktop Docker.

6.2 Via Singularity

Singularity is an application container for Linux systems. For more information read the full documentation of
Singularity here.

1. Clone a working copy from the repository and go to the folder:

git clone https://github.com/nest-desktop/nest-desktop-singularity
cd nest-desktop-singularity

2. Register the bash command for NEST Desktop Singularity:

export PATH=$PATH:$PWD/bin/

Note: You will have to repeat this every time you end a terminal session. If you like to register this command
permanently, please proceed according to the full documentation.

3. Build the Singularity images (it will ask for sudo password):

nest-desktop-singularity build

Note: This command (and the following ones) need to be executed inside the folder where the container files are
located, i.e. the nest-desktop-singularity folder.

4. Start the Singularity instances of NEST Desktop and NEST Simulator:

nest-desktop-singularity start

Now NEST Desktop is started. You can use NEST Desktop in the web browser at http://localhost:8000.

The installation is now complete! Now we can start constructing networks for the simulation!

For more information read the full documentation of NEST Desktop Singularity.

6.3 Via Python Package

16 Chapter 6. Setup Guide

https://github.com/nest-desktop/nest-desktop-docker
https://sylabs.io/docs/
https://github.com/nest-desktop/nest-desktop-singularity
http://localhost:8000
https://github.com/nest-desktop/nest-desktop-singularity

NEST Desktop

NEST Simulator cannot be installed via pip (maybe soon). Therefore, we need to install it in another way.

1. Install NEST Simulator (SKIP THIS STEP IF YOU HAVE NEST 3 INSTALLED.):

Read the full installation guide of NEST Simulator here.

We highly recommend installing NEST 3. With NEST 3, the API server (i.e., NEST Server) is already implemented.

2. Install the dependencies for the API Server of NEST Simulator:

pip install flask flask-cors RestrictedPython uwsgi

3. Start NEST Server as the back end:

The API Server for NEST Simulator is referred to as NEST Server.

nest-server start

Now, NEST Server is running at http://localhost:5000.

You can find the detailed information on NEST Server here.

4. Install NEST Desktop

NEST Desktop is available on PyPI and can be installed with the pip command:

pip3 install nest-desktop [--user] [--upgrade]

For more information read the complete installing guide here.

5. Start NEST Desktop (in another terminal session):

nest-desktop start

Now NEST Desktop is started. You can use NEST Desktop in the web browser at http://localhost:8000.

The installation is now complete! Now we can start constructing networks for the simulation!

For more information read the full documentation of the command API here.

6.3. Via Python Package 17

https://github.com/nest/nest-simulator/pull/2073
https://nest-simulator.readthedocs.io/en/latest/installation/index.html
http://localhost:5000
https://nest-simulator.readthedocs.io/en/stable/nest_server.html
http://localhost:8000

NEST Desktop

18 Chapter 6. Setup Guide

CHAPTER 7

Usage Guide

This guides provides detailed documentation for the Graphical User Interface (GUI) of NEST Desktop.

Note: If you want to see a quick start guide for in NEST Desktop, we have prepared a video showing the steps how
to construct networks and explore activity.

Getting Started

Once you start NEST Desktop, you can see the start page containing an image of a laptop with the NEST logo on
its screen. At the bottom it shows a short description of NEST Desktop (left) and some useful links and the current
version (right).

19

NEST Desktop

Note: You can reload the page if NEST Desktop has somehow crashed.

7.1 Construct neuronal networks

If you want to construct a network, you will have to open the network editor. The network editor shows the network
graph composing of nodes (shapes) and connections (lines).

20 Chapter 7. Usage Guide

NEST Desktop

Here, we explain steps to create and connect nodes.

Create nodes

In order to create a new node, you can click with the right mouse button in the network editor and a pie panel with
three letters appears to select an element type. A node is divided into three element types: stimulus (S), recording
(R) device and neuron (N). Then it creates a node of the selected element type.

Node labels

Each node graph is labeled to identify the model of the node. By default, it creates direct current generator (dc) for a
stimulus and a voltmeter (vm) for a recording device. Neurons are just labeled with n. You can find the full label of

7.1. Construct neuronal networks 21

NEST Desktop

the node model in the network controller.

Node colors

Nodes and connections contain parameter configurations which are displayed in the controller panel in the side navi-
gation. The color of nodes helps you to associate the network graph with the controller as well as the corresponding
visualization of the network activity. The color of lines is defined by the source node.

Node shapes

The specific shape defines an element type of a node:

• Hexagon: A stimulus device alias stimulator is an instrument which only produces signals towards target nodes.

• Parallelogram: A recording device alias recorder is also an instrument which observes states of a recordable
node.

• Square/Triangle/Circle: A neuron node is the core engine of a neuronal network model which received inputs
from other nodes and produces specific output using intrinsic equation.

Neuron shapes

The shape of neurons is represented differently by the set of synaptic weights of their connections.

• Square: Neurons without connections or mixed (positive and negative) synaptic weights to neurons

22 Chapter 7. Usage Guide

NEST Desktop

• Triangle: Neurons with excitatory connections to neurons (all synapse weights are positive)

• Circle: Neurons with inhibitory connections to neurons (all synapse weights are negative)

Connect nodes

Forming a network of nodes is defined by making connections between and within nodes. In order to connect nodes,
you can click on a connector of a node, then move the mouse towards anther node and finally click on a target node. It
creates a connection between source and target nodes.

Note: By pressing the hotkey ALT and clicking a node at the same time, you enable the connecting mode or continue
connecting other nodes.

Select model and parameters

You are able to select the model of a node in the network controller. Then it shows a list of parameters which you
might want to work on. Finally, you are able to change the values of visible parameters.

Network history

After every network changes, it automatic snapshot of the network it created and pushed to the network history list.
With this network history you can undo or redo the network changes. Loading a snapshot from this history is called
checkout network.

7.2 Simulate neuronal networks

You can click on the Simulate button to start the simulation of your network. In the code editor you can have an insight
into the generated script code (see below for further information).

7.2. Simulate neuronal networks 23

NEST Desktop

Code editor

NEST Desktop generates textual code from the constructed network. The generated code can be executed in any
Python interpreter. This way, the code semantics of the NEST Simulator is understandable and easily to learn.

The graphical representatives of the nodes deliver arguments to the block of the nest.Create(*) function.
Next, connections supply a specification for the block of the nest.Connect(*) function. The function nest.
Simulate(*) triggers the simulation of your constructed network. All recording nodes fill a block to collect activ-
ities containing neuronal properties, e.g. node ids and positions, and activity events.

24 Chapter 7. Usage Guide

NEST Desktop

7.3 Explore network activity

The network activity is composed of neuronal properties (positions and ids of neurons) and recorded events from
recording devices. Events can be subdivided in two groups: spike events and analog signals. Spike events contain
times and ids of the senders emitting events to the recording devices which can be considered as collectors (spike
detector). Analog signals contain continuous quantities from the recording devices aka samplers (voltmeter or
multimeter) which query their targets at given time intervals. Network activity can be explored in a graph or table.

Activity graph

7.3. Explore network activity 25

NEST Desktop

It displays either a chart graph or an animated 3D graph for the spatial network forming layers in topology whose
neurons have geographical positions. The chart graph contains graphical panels organized in vertical stacks. Chart
panels are introduced specifically to explore the network activity by mouse interaction. It uses a scatter graph to
visualize spike activity and a line graph to visualize analog signals. When you add one or more sub-panels for spike
activity it shows a histogram graph of spike times or of inter-spike intervals.

Activity table

26 Chapter 7. Usage Guide

NEST Desktop

You can go to the table by clicking on the Activity statistics button in the right side navigation. A table shows simple
statistics of recorded elements (rows) of a node (population) connected to a recording device.

In spike events, the columns show the spike counts, mean and standard deviation of 𝐼𝑆𝐼 (inter-spike interval) as well
as 𝐶𝑉𝐼𝑆𝐼 (Coefficient of variation in inter-spike interval).

In analog signals (e.g. membrane potentials), the columns show the 𝜇 (mean) and 𝜎 (standard deviation) of analog
signal values.

7.4 Manage projects

7.4. Manage projects 27

NEST Desktop

NEST Desktop has a project management helping you to organize your networks and network activity. If you want to
explore the network activity of the project, you will have to start the simulation (see Simulate neuronal networks).

Clicking on New project creates a new project where you can construct a network from the scratch (see Construct
neuronal networks). It is useful to give project a proper name so that you can recognize your projects.

Below the search field it shows a list of the projects. Clicking with right mouse button on a project item shows a menu
with options to reload, duplicate, download or delete the project. In the projects menu, you can find methods to reload,
download, upload, delete or reset projects.

Note: Unless you click on the save button, the project is not stored in database and is lost when you reload the page!

An important remark is that it stores only projects with neuronal networks in database, but all activity will be lost after
page reload!

7.5 Explore neuron models and devices

28 Chapter 7. Usage Guide

NEST Desktop

The model page provides you detailed documentation of the models.

7.5. Explore neuron models and devices 29

NEST Desktop

30 Chapter 7. Usage Guide

CHAPTER 8

Troubleshootings

Having trouble getting something working? Got a question that the rest of our docs can’t answer? Maybe we can help
with some answers to commonly asked questions and troublesome spots.

8.1 Error messages

Server not found

NEST Desktop cannot find the NEST Simulator. It has two possible reasons:

• NEST Desktop has a wrong URL under which it tries to contact the server. See the FAQ for NEST Simulator
below.

• The server is down. Contact the server operators and enter the URL of the NEST Simulator, e.g.
localhost:5000 in a web browser to check if it is running again.

Note: For advanced users: Check in a terminal whether NEST Simulator is running (curl localhost:5000).

Internal server error

It says that the back end (i.e, nest-server) ended with an internal error. In this case, you have to
monitor or debug the back end.

NEST error

NEST Simulator produces a value error, e.g. The value cannot be negative.. Please have a
look at the official NEST documentation to obtain the correct syntax for the commads.

31

https://nest-simulator.readthedocs.io/en/latest/

NEST Desktop

8.2 Frequently asked questions (FAQ)

NEST Simulator

How can I change the URL of the NEST Simulator? On the settings page you can find the URL of the NEST Sim-
ulator.

How can I check NEST Simulator? On the settings page you can click on CHECK button. If a chip with NEST
version appears, this indicates that NEST Simulator is working.

Project

How can I make a new project? In the navigation sidebar you will find a list item New Project to create a new
project.

How can I duplicate a project? In the project toolbox you will find a button to clone project.

How can I rename a project? In the navigation sidebar you will find the input field of the project name. There you
are able to change the name of the project.

How can I save a project? In the left navigation of the page you will find a floppy disc icon to save a project.

How can I delete a project? In the context menu of the projects (by clicking with the mouse right button on a project)
you will find a method to delete a project.

How can I download a project? In the context menu of the projects (by clicking with the mouse right button on a
project) you will find a method to download a project.

How can I delete multiple projects at once? In the context menu of the projects icon in the navigation side bar you
will find a dialog to delete projects. Then select several projects and delete them.

How can I download multiple projects at once? In the context menu of the projects icon in the navigation side bar
you will find a dialog to download projects. Then select several projects and download them.

How can I upload projects? In the context menu of the projects icon in navigation side bar you find a dialog to
upload projects. Then select a file or URL, it shows a list of projects. Select wanted project and then upload
them.

Where can I find the data for the project in JSON format? When the development mode is enabled, clicking on
the button {} (on which the prominent brackets used in JSON are shown) you will find the JSON data of the
current project.

Network

Where can I find the network controller? You will find the network controller by clicking on the icon (Network) in
the right controller. Nodes and connections are stacked as card panels in the network controller.

How can I empty a network? In the network graph you will find top right a trash button that empties the network.

32 Chapter 8. Troubleshootings

NEST Desktop

How can I create nodes? In the network graph you can click with the right mouse button, then a selector panel
appears to select the element type of the new node.

How can I connect nodes? In the network graph you can click on the connector of a source node, then move the
mouse towards the target node and click on the target node.

How can I connect a node with multiple nodes? Hold down the ALT key when clicking on the target nodes.

How can I (un)select a node / a connection? When a node or connection is selected you can press ESC to unselect
it or in network graph you can click on another node or connection to select it (and to remove the selection of
the former one). Click on the background area of the network graph or on the selected entry in the network
controller to unselect a node or connection. An other method to (un)select is to click on the node label or the
connection toolbar in the network controller on the right side again.

How can I colorize nodes? You will find the method to color in the context menu of the node by clicking with the
right mouse button on the node shape in the network graph or the node toolbar in the controller.

How can I change the color cycle of nodes? In the network settings you will find the way to change the color cycle.

How can I delete node / connection? You will find this method in the context menu of the node or connection by
clicking with the right mouse button on the element graph in the network graph or on the colored toolbar in the
network controller.

How can I modify parameters? You will find a list of parameters in the network controller. If they are not visible,
click on the model selection to check the visibility of the parameters.

How can I reset all parameter values? In the context menu of a node or connection you will find the method to reset
all parameters of the corresponding node or connection.

How can I reset a parameter value? In the context menu of a parameter (by clicking right button on a parameter)
you can find the method to reset a parameter. It also shows the default value of the parameter.

How can I set a connection to “inhibitory”? You can assign a negative value to the weights in the connection con-
troller.

How can I get the distribution for parameters? You are able to activate the distribution of the parameters in the
export mode.

How can I get a spatial node? In the context menu of the node, you can (un)set the spatial mode of the node.

How can I generate grid/free positions? When the node is spatial, a position item will replace the population item.
Click on the position item to open a popup of the position specifications. Modifying a value will generate
positions, at the end of the panel you will find a button to generate positions.

How can I generate an array? In the context menu of the array parameters (e.g. the spike times of a spike generator)
you will find a method to generate an array.

Simulation

How can I start a simulation? Click on the SIMULATE button in top right of the page to start the simulation.

How can I stop a simulation? Unfortunately, the option to stop simulation is not implemented.

How can I activate “simulation after change”? In the context menu of the SIMULATE button (by clicking it with
the right mouse right button) you will find an option to activate simulation after change.

How can I activate “simulation after load”? In the context menu of the SIMULATE button (by clicking it with the
right mouse button) you will find an option to activate simulation after load.

8.2. Frequently asked questions (FAQ) 33

NEST Desktop

How can I activate “simulation after checkout”? When you go to another network version of the history, it auto-
matically starts the simulation. In the context menu of the SIMULATE button (by clicking it with the right mouse
button) you will find an option to activate simulation after checkout.

Where can I find the kernel controller of the simulation? The kernel controller can be shown by clicking on the
engine icon on the right side.

Where can I set the simulation time? You will find the simulation time in the kernel controller.

Where can I change the time resolution of the kernel? You will find the time resolution for the NEST Simulator in
the kernel controller.

Warning: Please verify that the resolution of the recorders are larger than the resolution in the kernel!

Where can I change the seed? You can find the seed value in the kernel controller.

How can I activate the seed randomization? You can find an option to activate the seed randomization in the kernel
controller.

How can I find the Python script code of the simulation? On the right side you can find a code symbol <> opening
the code editor.

Activity

How can I download the activity data of a single recorder? In the context menu of the recorder you will find a
menu option to download the events of this recorder.

How can I download activity data of all recorders? In the projects dialog to download projects you can find options
to download the activity of projects.

How can I drag/zoom the chart? You will find those modes in the mode bar (top) in the activity graph. For dragging
or zooming, simple click on the chart.

How can I reset the view to the default one? Click on the house icon in the mode bar (top) to reset the view to the
default one.

How can I download plot of the chart? Click on the photo icon (top) to download the plot of the chart. You can
choose which format will be used.

Where can I find activity controller? The controller for the animated activity is placed in the activity controller. You
can find the activity controller by clicking on the chart icon on the right side.

How can I modify the bin size of the PSTH? In the chart controller you will find tick slider to modify the bin size.

How can I change the labeling of axes or the title? Click on the label of the axe or the title to change it.

How can I hide/show dots/lines? Click on the legend to alter the visibility of the dots/lines.

How can I stop an animation? Go to the animation controller. You will find a pause icon to stop the animation.

How can I increase/decrease the animation speed? In the animation controller you will find a forward or backward
button to alter the animation speed.

How can I change the colorscale of dots? In the animation controller you will find a colormap of the current col-
orscale. A little below you will find an options to select the colorscale.

How can I change the size of dots? In the animation controller you can find a slider to adjust the dot size.

34 Chapter 8. Troubleshootings

NEST Desktop

How can I add a “trailing” effect for dots? It only works with the animation of the spikes.

How can I rotate camera? Click and hold the (left) mouse button on the animation area and then move it around to
rotate the camera.

Model

What is the terminology of this model? This model includes neuron, synapse and device (stimulus / recorder) mod-
els.

How can I read the documentation of a model? In the context menu of a node you will find a documentation of
these models.

Settings

Where can I find the settings? You will find settings by clicking on the cog icon on the left in the navigation side
bar. The settings are stored in the ‘local storage’ of the browser.

How can I change settings? You can change settings in the settings section by clicking on cog icon next to navigation
side bar.

Where can I find the databases? The databases are stored as the ‘Indexed DB’ of the browser.

How can I switch to the development view? In the settings of the application you will find an option to switch to
the development view.

8.2. Frequently asked questions (FAQ) 35

NEST Desktop

36 Chapter 8. Troubleshootings

CHAPTER 9

Use NEST Desktop on EBRAINS

EBRAINS is a platform infrastructure for neuroscience. NEST Desktop is available as a prototype online.

Note: You need an EBRAINS account to access NEST Desktop.

Trouble shootings

Why cannot I find NEST Simulator? Sometimes the issue is resolved when you check NEST Simulator.

If not, the problem lies in the cookies and site data for the user authentication of the EBRAINS platform. That
cookie expires after a session. This happens when you re-access to https://nest-desktop.apps.hbp.
eu after the browser is closed.

A simple solution is to reload the page with deleting the cookies (CTRL + SHIFT + R) so that you can re-login.

A persistent solution is to set the browser configuration so that it deletes cookies and site data when the browser
is closed (It works in Firefox), but avoid to accidentally delete cookies you want to keep.

37

NEST Desktop

38 Chapter 9. Use NEST Desktop on EBRAINS

CHAPTER 10

How to lecture with NEST Desktop

This section gives directions for lecturers who want to teach computational neuroscience with NEST Desktop. Using
computer simulations, students are able to explore models ranging from single neurons to large neuronal networks.
Numerical experiments of increasing complexity help to understand how brain networks function and what the features
of their dynamic behavior are.

Note: This section assumes that you have prior knowledge of how to use NEST Desktop. If you have not used NEST
Desktop before, please read the User Documentation first (How to use NEST Desktop).

To support the organization of a course, we provide some hints for course instructors:

• Course design

• Didactic concept

Additionally, we provide course materials to be handed out to participants:

• First steps toward simulating brains

• How to prepare a course protocol

This guide shows how you can teach the biophysics of neurons, synapses and large networks of the brain to students
using NEST Desktop. Video tutorials illustrate important aspects of the course work. The provided material could be
used to prepare handouts for students.

Select the level of the course that you plan to conduct with NEST Desktop:

Acknowledgments

Thanks for the help:

• Stefan Rotter (course instructor)

• Jeanine Laturner (tutor)

39

NEST Desktop

40 Chapter 10. How to lecture with NEST Desktop

CHAPTER 11

Course design

A course with NEST Desktop can be organized for students at different levels of university education. The course can
be held in a computer lab, allowing for personal interaction with other course participants and tutors. Alternatively,
the course can be held online, where students use their own computers at home and interact by video chat. For both
options, NEST Desktop is deployed in a virtual machine that is controlled by the students via a standard web browser.

A typical course could be scheduled as a one-week block course with fixed hours for complementary lectures, technical
tutorials and consultation hours. The complementary lectures provide the basic background information needed to
understand the course assignments. The technical tutorials explain step by step the operation of NEST Desktop. The
consultation hours give students an opportunity to ask the tutors questions about the course assignments. Students can
also post their questions and comments to the teaching staff by email.

Specific sample assignments are provided for students with different background knowledge.

41

NEST Desktop

42 Chapter 11. Course design

CHAPTER 12

Didactic concept

NEST Desktop focuses on teaching university students, for whom significant programming skills cannot be assumed.
The goal is to give them an introduction to computational neuroscience, and illustrate how computer simulations
are used in the field. NEST Desktop provides an intuitive graphical user interface to NEST, which is actually a
script-based simulation tool widely used in research. The idea is that students approach and understand important
concepts in neuroscience by means of interactive construction, simulation and analysis of neuronal network models.
This functionality is enabled by visual elements that can be manipulated with the computer mouse. No script-based
programming is required at this stage. Thanks to this intuitive approach, learning is fast, and students can devote their
time and attention to neuroscientific content rather than code syntax and data structures.

NEST Desktop still implements the standard workflow in the computational sciences: model creation, numerical
simulation, statistical analysis and visualization of the simulation outcome. This logic represents another didactic
dimension of NEST Desktop, beyond lowering the threshold for novices to use complex and powerful simulation
engines like NEST. In addition, it is possible to inspect the automatically generated NEST code and even change it
before simulation. This way, the students get some insight into the script-based interface of NEST, which enables
more complex simulations.

For a typical course in computational neuroscience, the following combination of three course elements has proven to
be effective:

1. A theoretical introduction to computational neuroscience using slide-based presentations, possibly enhanced by
the interactive use of NEST Desktop as a demonstrator during the lecture.

2. An interactive tutorial explaining how NEST Desktop can be employed to work on course assignments.

3. Structured lab reports exploiting the capabilities of NEST Desktop with regard to creation, simulation and
analysis of models, potentially prepared in small working groups.

Please refer to the various examples of specific assignments offered in this documentation.

43

NEST Desktop

44 Chapter 12. Didactic concept

CHAPTER 13

First steps toward simulating brains

In this course, students will learn how computer simulations are employed in brain research. Sometimes, these sim-
ulations are very close to experiments, and a viable goal may be to mimic the known biological reality as good as
possible. In other cases, the motivation is rather to devise a strategy for entirely new experiments. In this case, a
computer simulation is more like a thought experiment, leading to a new hypothesis how things might work. This is
the promise and the potential of computational neuroscience.

In experiments with animals or humans, brain activity must be recorded with suitable advanced instruments (e.g.
electrodes, optical instruments, or brain scanners). This is exactly what researchers also do in simulations. For that
reason, simulated data typically looks very much like experimental data, and they have to be analyzed like experimental
data. To some degree, therefore, this is also a course on neuroscientific data analysis. In contrast to experiments with
biological brains, in a simulation one has access to much more detailed information about the inner workings. As a
consequence, computer simulations can sometimes provide insight that goes beyond what is achieved by experiments,
even with latest techniques. This sets the stage for what students can expect from this course, and what students need
to do to get the most out of it.

Specifically, students need to learn how to . . .

• select a neuron model
• construct a neuronal network model
• apply a stimulus to the network
• record the activity of neurons
• run a simulation
• analyze the activity data
• visualize the results
• document a simulation for the protocol

45

NEST Desktop

46 Chapter 13. First steps toward simulating brains

CHAPTER 14

How to prepare a course protocol

The course focuses on the function of synaptically coupled neuronal networks in the brain. Step by step, simulation
experiments of increasing complexity will be performed. The students’ task is to document what they did, why they
did it, and what was the outcome, using precise language and appropriate terminology. In addition, students will need
to design meaningful illustrations and parameter tables describing the simulation.

How to achieve this?

Simulations with NEST Desktop can be exported to PDF, PNG or SVG files. For PDF export, students can increase
the zoom factor of the browser before printing the page. Image files can be imported to a document processor, e.g.
LibreOffice or LaTeX for annotated illustrations of the simulation. It is important, however, that the writing is focused,
and images to import into the protocol are carefully selected. As a final step, the protocol will be exported to a single
PDF file and submitted by email to the course instructors.

Protocols must be concise, complete and correct. For each assignment, students must separately address the following
four aspects:

1. What is the scientific question or problem that is approached by the simulation? Use correct terminology
in descriptions. Keep neurobiological aspects and mathematical modeling concepts apart.

2. Which exact simulation setup was used to answer this question? List and describe all its components (e.g.
neurons, devices), specify how they are connected together (e.g. electrodes, synapses), and provide tables of all
relevant parameters. Default settings need to be stated at the beginning of each section. The goal is to make
simulations fully reproducible.

3. What was the outcome of the simulations performed? A meaningful set of figures should be selected to
underpin the outcome of the simulations. In most cases, figures are helpful to illustrate the text-based description
of the role of a specific parameter for the behavior of the system in question (e.g. a neuron, a network).

4. What are the conclusions in view of the simulation results? Based on the simulation results obtained, formu-
late appropriate answers to the original questions. Distinguish aspects of biology/biophysics and possible issues
(e.g. shortcomings) of the numerical model.

47

NEST Desktop

48 Chapter 14. How to prepare a course protocol

CHAPTER 15

Bachelor students

This section provides sample assignments for students with little prior knowledge. The focus lies on the activity
dynamics of single neurons. In all assignments we use iaf_psc_alpha as our neuron model. It is studied how a
neuron responds to different types of input.

Topics

15.1 Direct current injection into single neurons

Intracellular recordings give access to the membrane potential of single neurons. If cells are studied in vitro in an
acute slice preparation, the synaptic input, which a neuron normally receives under in vivo conditions, is then missing.
It must be replaced by artificial input applied to the neuron through the electrode. One can use direct current (DC)
of various amplitudes to systematically explore the response properties of a neuron. This represents, in fact, a simple
and efficient method to characterize biological neurons in electrophysiological experiments. We will here apply it to
model neurons as well.

You will use a simple linear integrate-and-fire (LIF) point neuron model to devise a single-neuron current injection
experiment. In the LIF neuron model, spikes are generated each time the membrane potential reaches a predefined
threshold. Spike waveforms are not modeled explicitly, and you recognize a spike only by the reset (strong downward
deflection) of the membrane potential that follows a threshold crossing.

1. What is the membrane potential response for both negative and positive values of the applied current? You
can measure the membrane potential by performing an intracellular recording, using a voltmeter. Try different
amplitudes of the applied current and describe the phenomena you observe.

2. Explore how the membrane potential response depends on the biophysical neuron parameters. In particular,
describe the influence of the time constant of the membrane, the spike threshold and the absolute refractory time
on the membrane potential trajectories.

Video tutorial

49

NEST Desktop

15.2 Noise current injection into single neurons

To account for additional effects seen in recordings from real nerve cells, we add some noise current to the input
mimicking spontaneous channel openings, or synaptic bombardment originating from a large pool of presynaptic
neurons. If the fluctuations of a physical variable are due to the combined influence of a large number of small
contributions, the concept of White Noise can provide an adequate descriptive model. In this idealized type of signal,
all frequencies are present in equal proportions, but with random phases (wind). A well-known example is white light,
which comprises all colors from the visible spectrum. In our simulations, we use a sequence of independent identically
distributed Gaussian random variables to approximate a particular type of white noise, Gaussian White Noise (GWN).

1. First look at the effect of noise in the subthreshold case. While you explore the membrane potential response
for (weak) noise current input, note that GWN, like any Gaussian random variable, has two parameters: mean
and variance. Perform systematic simulations with different combinations of mean and variance (or standard
deviation) and find a way to document the results.

2. Now, consider a spiking neuron with “strong” noise current as input. If the strength of the input (mean), or
the amplitude fluctuations of the input (variance), are large enough, the firing threshold is crossed and action
potentials are generated. In contrast to the case of DC input, the fluctuations of the membrane potential will
now affect the timing of the action potentials to some extent. Document this phenomenon with a suitable set of
experiments, where you run the simulations with different seeds of the random number generator.

3. Play with the parameters of the noise current over a certain range of values when there is

(i) no action potential generated, and

(ii) several spikes generated.

What exactly is the “threshold” now? To judge the effect of random fluctuations, it is important to look at
multiple repetitions of the same experiment. What happens to the frequency of spikes and the irregularity of
spike trains as mean and/or variance of the noise is increased? The irregularity of neuronal spiking can be
assessed, for example, by the coefficient of variation (CV) of the interspike intervals.

4. Now you should systematically measure two types of input-output curves of the neuron:

(i) Keep the variance of the noise at a fixed level and systematically change the mean of the noise. What is
the difference to the curve you obtained with pure DC input?

(ii) Now keep the mean of the noise at a fixed level and systematically change the variance of the noise. What
is the minimal variance (“threshold”) that leads to a non-zero response rate?

15.3 Excitatory and inhibitory synaptic input into single neurons

In a biological neuronal network, communication between neurons typically relies on synaptic input. Whenever
the presynaptic neuron generates a spike, a chemical neurotransmitter (e.g. glutamate or GABA) is released and
bound to postsynaptic receptors. This leads to a transient activation of the synapse, and a transient inward or outward
postsynaptic current (PSC). As a consequence, the membrane potential of the postsynaptic neuron experiences a small
deflection, the postsynaptic potential (PSP). Typically, for an excitatory synapse using glutamate as a transmitter, this
deflection is depolarizing (towards threshold). In contrast, for an inhibitory synapse using GABA as a transmitter, it
is hyperpolarizing (away from threshold). The superposition of many PSCs of either polarity represents the effective
input to a neuron, which may, or may not, lead to an output spike to be sent to other neurons in the same circuit. You
should now explore all these aspects by performing the following numerical experiments:

1. Devise a simulation method to study single postsynaptic potentials. Which simulation parameter reflects the
“strength” of a synapse? Systematically explore the effect of activating single excitatory and inhibitory synapses.
Under which conditions can activating a single synapse elicit an output spike?

50 Chapter 15. Bachelor students

NEST Desktop

2. Multiple PSPs elicited in rapid succession at one and the same synapse add up to a compound signal if they suf-
ficiently overlap in time. This phenomenon is called “temporal integration”. Multiple PSPs elicited at different
synapses are also superimposed, all contributing to the membrane potential of the postsynaptic neuron. This
is called “spatial integration”. Design a set of experiments to illustrate the phenomena of temporal and spatial
synaptic integration in the subthreshold regime. Which parameters of the neuron are mainly responsible for the
temporal overlap between individual PSPs?

3. A hallmark of the LIF model, which is shared by many biological neurons, is the linearity of temporal and spatial
integration. The membrane potential response to a combined input is just the sum of the individual responses to
the individual inputs, as long as all of them remain subthreshold. Design an experiment that demonstrates the
linearity of synaptic integration for the LIF neuron model. Does linearity also hold for superthreshold inputs
that lead to action potential firing?

NEST Desktop allows you to study how neurons are activated by synaptic input. You can use the so-called
spike_generator for experiments with maximal control. In essence, you specify the time point of each spike
explicitly. Don’t forget to specify the amplitude of the post-synaptic potential. This way, you can explore the effect of
“spatio-temporal integration”. You can also study, under which conditions synaptic input can trigger an output spike.

Video tutorial

15.4 Poisson input into single neurons

In models, we often assume that presynaptic action potentials are arriving randomly at a certain rate. Synapses on the
dendrite of the postsynaptic neuron are then activated in a random fashion. The stochastic process that reflects such
random arrival of point-like events is called a Poisson process. Its only parameter is the rate at which events occur.
In view of the linearity of temporal and spatial dendritic integration, all synapses that have the same amplitude and
sign can be treated as a single compound source of input. You can now employ the Poisson generator functionality of
NEST to explore the response behavior of neurons:

1. Devise a method to display simulated Poisson spike trains, which will later be used as a source of input to
our model neuron. Verify the randomness of the Poisson generator by repeating the same simulation multiple
times. A raster display with lines corresponding to “trials” rather than “neurons” represents an adequate tool to
illustrate this.

2. Consider an LIF neuron that receives Poisson input of a constant rate using a synapse of a specific amplitude.
Analyze how the input rate influences the membrane potential and the spiking response of the neuron. The
parameters of interest are the mean and the variance of the membrane potential, as well as the output firing rate
and the irregularity of the output spike train. What happens if you change the strength of the synapse?

3. Now we consider the more realistic situation that a neuron receives input from two different and independent
presynaptic populations, one consisting of excitatory, the other one consisting of inhibitory neurons.

Note: The presynaptic population of a cortical nerve cell can be quite large, comprising up to 10 000 neurons,
say.

What matters for the postsynaptic neuron is the accumulated spike rate for each type of input, so these input
rates will also be large. The model has two parameters, the rate 𝜆𝐸 of the excitatory Poisson process and the
rate 𝜆𝐼 of the inhibitory Poisson process. Begin your simulation experiments by fixing 𝜆𝐸 = 𝜆𝐼 assuming
exactly the same firing rate for excitatory and inhibitory inputs. Start with small rates (subthreshold) and jointly
increase them step by step until output spikes are generated (superthreshold). Describe your observations for
weak and for strong input, both on the level of the membrane potential and on the level of output spike trains.

4. Considering synaptic bombardment from a large pool of presynaptic neurons, the mathematical model of shot-
noise is appropriate to describe membrane potential fluctuations. Generally, the two relevant parameters 𝜆𝐸

and 𝜆𝐼 are fixed independently, and combinations with 𝜆𝐸 ̸= 𝜆𝐼 may arise. Previously, we have considered

15.4. Poisson input into single neurons 51

NEST Desktop

Gaussian White Noise input, which was described by the two parameters mean 𝜇 and variance 𝜎2 . No specific
assumptions were then made about the biophysical origin of membrane potential fluctuations. Shotnoise can
also be described in terms of the mean 𝜇 and variance 𝜎2 of the membrane potential. As long as the input
remains subthreshold and no output spikes are generated, it holds that 𝜇 ∼ 𝜆𝐸 − 𝜆𝐼 and 𝜎2 ∼ 𝜆𝐸 + 𝜆𝐼 . (The
symbol ∼ means “is proportional to”.) Perform some experiments that illustrate this relation.

5. If input rates are large enough, output spikes are generated. There is a loose correspondence between the
mean membrane potential and the mean output rate, as well as between the membrane potential fluctuations
(variance) and the variability of output spike trains (irregularity). One speaks of the “mean-driven regime” and
the “fluctuation-driven regime”, depending on whether spikes are predominantly generated by a depolarizing
drive (mean), or by membrane potential fluctuations (variance), respectively. Explore the meaning of these two
terms, and illustrate the two regimes by suitable simulations. Develop criteria that allow you to classify neuronal
activity recorded in experiments accordingly.

NEST Desktop does not only offer direct current (DC) stimulators, but also noise current stimulators. In principle, they
are used in the same way as a DC stimulator. “Poisson input” is just one specific form of “noise input”. Technically,
this is correct, and this immediately explains how to use it in a simulation: Just replace the direct current stimulator by
a Poisson stimulator.

Biologically, however, we are now talking about an input that works with spikes that activate synapses, and it does
not just inject electrical charge into the cell. Therefore, changing the properties of synapses on the target neuron also
changes the properties of the “noise” input. This may be confusing, but the concept of “shotnoise” exactly reflects
this. You should also keep in mind that the spikes generated by a Poisson source typically originate from a large set of
presynaptic neurons. In the neocortex, this set could comprise hundreds or thousands of presynaptic neurons, and the
rate parameter can assume very large values (rate of individual neurons number of presynaptic neurons).

Noise and fluctuations in our simulations are based on so-called “pseudo-random” numbers. They look like “true”
random numbers for all practical purposes, but they are generated by a perfectly deterministic algorithm, one after
the other. Using the same starting point (seed), you get exactly the same stream of random numbers. However, if
you want a different stream of random numbers each time you perform the simulation, select Randomize seed in the
“Simulation” controller.

52 Chapter 15. Bachelor students

CHAPTER 16

Master students

This section covers advanced topics for students with previous knowledge in neurobiology. Here, we cover the activity
dynamics of single neurons and of neuronal networks.

Topics

16.1 The Hodgkin-Huxley theory of the action potential

16.1.1 Current clamp simulation of the free-running membrane

The leaky integrate-and-fire neuron model features a very simple mechanism of action potential generation: a fixed
threshold on the membrane potential. The upstroke of the spike is not part of the model at all, whereas the voltage
reset and the absolute refractory time following each spike are imposed on the membrane potential trajectories. To
address the biophysical underpinnings of action potential generation and spike aftereffects, however, a different model
must be considered. It turns out that specific membrane components, so-called voltage-dependent ion channels, are
responsible for spike generation. The Hodgkin-Huxley model of the squid giant axon (published in 1952) accounts for
these additional components. It explains why action potentials dynamically arise, and which membrane parameters
and other circumstantial factors matter during this process. You will now perform simulation experiments on Hodgkin-
Huxley (HH) neurons and this way characterize this model:

1. Verify that the subthreshold properties of the HH neuron model are similar to the properties of the LIF neuron
model. To address this issue, inject a depolarizing or hyperpolarizing current into a LIF neuron and into a HH
neuron and perform intracellular recordings to document the membrane response in both cases. Make sure the
current is weak enough to not elicit a spike.

2. For strong-enough DC input current the HH model neuron will fire a train of action potentials. Inspect the spike
waveform carefully and relate it to the spikes generated in a LIF neuron. The following keywords might guide
your discussion: threshold, upstroke, downstroke, spike width, voltage reset, after-hyperpolarization, absolute
refractory time, relative refractory time. Is the spike waveform of the HH neuron really the same for different
input scenarios (e.g. weak vs. strong current)?

3. Use a spike recorder to characterize the spiking response to superthreshold current input. The goal is again to
characterize the neuron by a curve that depicts the firing rate response as a function of the applied current.

53

NEST Desktop

NEST Desktop offers different neuron models. Here you should select hh_psc_alpha and compare its behavior
to the simpler iaf_psc_alpha model that we have studied previously. As these two models have an entirely
different spike generation mechanism, any intracellular recording of the membrane potential will look very different
in both models. In the LIF model, spikes are just threshold crossings. In the HH model, in contrast, their waveform is
explicitly simulated.

16.1.2 Sodium and potassium currents under current clamp conditions

It is the joint action of both voltage-dependent sodium (𝑁𝑎+) channels and voltage-dependent potassium (𝐾+) chan-
nels which underlies action potential generation in excitable membranes.

In particular, sodium channel activation (i.e. opening) due to some initial depolarization leads to an influx of sodium
ions, which depolarizes the membrane even further and opens even more sodium channels. This self-amplifying
avalanche of sodium channel activation drives the action potential to a point of no return, from where it continues until
the sodium reversal potential is reached. Sodium channel inactivation and potassium channel activation finally termi-
nate the avalanche and repolarize the membrane. The ongoing outflux of potassium ions through (non-inactivating)
potassium channels eventually hyperpolarizes the membrane towards the reversal potential of potassium.

1. Action potential generation based on voltage-dependent ion channels takes place in several stages, as described
above verbally. Use the membrane potential recording of a single spike to illustrate the dissection of this process.
Which of the contributing factors determines the temporal width of the spike? Can one record the underlying
ion-specific membrane currents in biological neurons?

2. It is difficult to disentangle the effect of sodium channel inactivation and potassium channel activation. The
former helps terminating the upstroke, the latter causes a downstroke of the membrane potential during a spike.
In a simulation, you can record the concentration of h, m and n particles of the Hodgkin-Huxley model for a
more precise view on these two processes. Is such a recording also possible in a biological neuron?

3. Explore the effect of the specific neurotoxins TTX and TEA on neuronal spiking. You can easily achieve this in
your simulations by setting the peak conductances of either sodium channels or potassium channels, respectively,
to zero. What happens if you only partially knock-out these channels by setting them to a non-zero, but reduced
value? Formulate and explain your expectations before you perform the experiments.

NEST Desktop allows you to record the activation of h, m and n particles directly, using a multimeter. In a
biological neuron, this would never be possible. To assess their dynamics, multiple separate experiments have to be
performed.

16.1.3 Exploring the “spike threshold” and the “depolarization block”

Action potential generation follows an “all-or-nothing” principle. Whenever favorable conditions are met, a stereo-
typed waveform is kick-started and cannot be stopped any more. But what exactly are those “favorable” conditions?
You should perform some numerical simulations to address this question:

1. Identify the “spike threshold” of a HH neuron based on the input-output function you generated above. Zoom
into the threshold regime by performing more simulations just below and just above threshold. Does the HH
neuron exhibit “type I” behavior or “type II” behavior?

2. Use now brief current steps to induce single spikes only. The two parameters of interest are the width of the
current pulse, and its amplitude. In a nutshell, brief steps need to have a high amplitude, longer steps can
be somewhat weaker to successfully generate a spike. Explore the threshold behavior with regard to both
parameters, along the lines explained in the lecture.

3. You can use a continuous current ramp, as opposed to a sharp current step, to stimulate the neuron. If the rise
in amplitude is shallow enough, it is possible to depolarize the membrane beyond any threshold voltage. No
spike is generated then, and this phenomenon is called the “depolarization block”. Try out different slopes of

54 Chapter 16. Master students

NEST Desktop

the ramp. Can you explain it in terms of sodium channel inactivation? Perform a simultaneous recording of h,
m and n particles to back up your explanation.

16.2 Point neuron models with conductance-based synapses

The term “point neuron” refers to a nerve cell, in which spatial variations of the membrane voltage are negligible.
Such cells are then fully described by a single membrane potential variable. Most small neurons share the property of
being “electrotonically compact” in this sense. Spatially extended cells, in contrast, must be conceived as a physical
cable. In such a cable, the voltage is attenuated with distance due to leakage of electric charges. Moreover, the cable
itself acts as a spatio-temporal filter and alters the signal transmitted by it. Such a cable is often approximated by a
chain of electrically coupled single compartments, leading to so-called multi-compartment neuron models.

16.2.1 Point neurons with conductance-based synapses

In contrast to what we assumed for the leaky integrate-and-fire neuron model, biological synapses operate on the basis
of ion channels, and should not be considered as fixed current sources. When a neurotransmitter is released at the
presynaptic axon terminal, it diffuses through the synaptic cleft and binds to the receptors sitting in the membrane
of the postsynaptic neuron. As a result, ion channels linked to the receptors open transiently and enable a brief
postsynaptic current flow. The duration of this transient inflow or outflow is described by the so-called synaptic
time constant. Depending on the concentration gradient of the ions involved (𝑁𝑎+ for excitatory synapses, 𝐶𝑙− for
inhibitory synapses), this current is either depolarizing or hyperpolarizing, respectively.

If many of these synaptic channels are simultaneously open due to massive synaptic bombardment from a pool of
presynaptic neurons, this may change the integration properties of the neuron as a whole. Its total input resistance
𝑅 is decreased, and therefore the membrane time constant 𝜏 = 𝑅 · 𝐶 is decreased as well, affecting the width of
individual postsynaptic potentials (PSPs), which may also have a reduced amplitude due to the strong membrane
leak. In addition, postsynaptic potentials have a shorter duration, as the membrane time constant is smaller. This
scenario has been described as the “high-conductance state”. Neurons then assume nonlinear properties, as their input
integration becomes state-dependent: PSPs at rest are different to PSPs sitting on a background of many activated
synapses.

1. Consider an isolated, conductance-based point neuron, with synapses that have alpha-functions as post-synaptic
current transients, and a non-zero synaptic time constant. Simulate an individual excitatory postsynaptic po-
tential, and explore its dependency on the driving force (distance to the excitatory reversal potential). This can
be achieved by injecting additional subthreshold depolarizing currents of different strengths. Perform the same
experiment for an inhibitory postsynaptic potential and discuss the differences to the case of excitation.

2. Now replace the DC input by an equivalent synaptic input, called synaptic background activity. It can be conve-
niently provided by a Poisson source, which is coupled to the neuron by an excitatory synapse. By systematic
experimentation, you can now determine which firing rate of the Poisson source leads to the same mean depo-
larization of the postsynaptic neuron as a given DC injection. On top of the background activity, simulate again
an individual excitatory postsynaptic potential. Describe how it changes its shape (amplitude and width) in the
high-conductance state.

3. You can emphasize the high-conductance state even more, if you apply a combined excitatory and inhibitory
Poisson input. In order to arrive at the same mean depolarization, the inhibitory input must be overcome by some
extra excitatory input. The excessive excitatory and inhibitory synaptic bombardment, however, will reduce the
effective input resistance and time constant even more.

4. Consider now synapses with different synaptic time constants. The reduction of synaptic strength in the high-
conductance state is more prominent for slow synapses (large synaptic time constant) than it is for fast synapses
(small synaptic time constant). Perform an experiment that demonstrates this surprising effect. You might just
repeat the experiment from the second assignment with a different synapse that has a smaller or larger synaptic

16.2. Point neuron models with conductance-based synapses 55

NEST Desktop

time constant. Then you compare the attenuation of synaptic transmission due to background activity in both
cases.

NEST Desktop enables strategies of analysis that cannot easily be adopted in a biological experiment. In order to
display weak effects under noisy conditions, researchers have to perform many repetitions in several recording sessions
and compute the average outcome afterwards. This is very time consuming. In a simulation, in contrast, you might
consider performing simultaneous recordings from several neurons at the same time and directly compute the average.
This is easily achieved in a simulation by setting the population size to a large enough value.

16.3 Network dynamics

In the central nervous system, neurons never act in isolation. Rather, they are bound to communicate with other
neurons using both electrical and chemical signals. Fast electric signaling mostly relies on specific and precise synap-
tic transmission based on neurotransmitters. Depending on the transmitter system the presynaptic neuron is using,
synapses come in different flavors: Synaptic communication is either excitatory or inhibitory. Although polarity is the
most salient property, other parameters of synaptic transmission are also important, depending on the type of informa-
tion that is being processed. We mention here the strength of the synapse, the transmission delay, the rise time of the
postsynaptic potential, and different aspects of synaptic plasticity. Synapses are highly important building blocks of
networks, determining the properties and the function of brains in essential ways.

A typical task of behavioral control rarely involves just one step of signal transduction. In most cases, several process-
ing stages are needed. To achieve a complex task (e.g. produce spoken language) many neurons at different places in
the brain eventually make their contribution. There is little agreement among researchers, however, how the commu-
nication is organized on the system level. In fact, different parts of the brain seem to employ very different strategies
of collective signal processing. This is at least what the microanatomy of synaptic connectivity in brain circuits sug-
gests. Whereas the cerebellum has a clear feed-forward architecture, neuronal communication in the large recurrent
networks of the neocortex is dominated by feedback. It is really a daunting task to characterize these networks of
different types of neurons in the brain to help improving our understanding of their role for the control of behavior.
Numerical simulations of prototypic circuits help us exploring and refining theoretical ideas, and aligning them with
biological design principles.

16.3.1 Recurrent networks of excitatory neurons

The most numerous cell type in the neocortex are pyramidal neurons (approximately 80%). They generally use glu-
tamate as a transmitter and are, therefore, excitatory. Local circuits are highly recurrent, and there is intense synaptic
communication among neurons. External inputs make an important contribution as well. In fact, each neuron receives
a large number of inputs from other neurons, and contributes a large number of outputs to other neurons in the same
network. Individual synapses are rather weak, though. Only the joint action of many excitatory inputs can bring the
postsynaptic neuron to fire a spike. The synaptic connectivity of the network, to the degree to which it is known at all,
is statistically consistent with the topology of a random graph. A typical value for the connection probability in local
cortical networks is 10%.

1. Set up a large-enough population of excitatory neurons, based on the standard LIF model. Establish random
synaptic connections among neurons.

Note: There are several different options to wire up a network randomly (see https://www.nest-simulator.org/
connection-management).

Find a meaningful way to monitor neuronal activity in the network, both on the level of individual neurons
(membrane potentials and spike trains), and on the level of the whole population (PSTH, as a proxy for the
EEG). Characterize the type of activity that you observe.

56 Chapter 16. Master students

https://www.nest-simulator.org/connection-management
https://www.nest-simulator.org/connection-management

NEST Desktop

2. Explore now the role of external input for the dynamics of the recurrent network. As this external input is
normally provided by other neurons that are not part of the local network in question, a Poisson generator
represents an adequate model for it. Try out different options how to connect it to the recurrent network, and
play with the intensity of the input. Networks in the neocortex are sparse (10% connectivity). How does the
input influence the response of such a sparse network?

3. If the Poisson input is neither too weak nor too strong, the activity in the recurrent network looks random itself,
both on the level of spike trains and on the level of membrane potentials. What are the reasons for this? You can
test the influence of the random Poisson input by replacing it by a deterministic DC source. Make sure that the
amplitude of the injected DC is roughly equivalent to the Poisson input applied previously. As a criterion, you
can either compare mean membrane potentials in an intracellular recording of one of the neurons in the network,
or you can base your calibration on the response rate of one or several neurons in the network.

NEST Desktop offers several different methods to wire up a network randomly. Make sure you understand how they
work, and which of them allows you to generate sparse networks. Your networks should be not too small and not too
large. Networks with 100 neurons may be a good start. Working with a larger number of neurons is possible, but the
initial wiring and the simulation of activity can take quite long then. Also make sure that each neuron receives enough
external input, as the input from other neurons in the network will not suffice to push the membrane potential above
threshold and elicit any activity.

16.3.2 Recurrent networks of inhibitory neurons

There are networks in the brain that consist of only inhibitory neurons. In particular, several nuclei in the basal ganglia
(e.g. the striatum, and both parts of the globus pallidus) are comprised of GABAergic neurons. It is clear that such
networks depend on excitatory drive from outside to become active.

1. Use a similar setup as for the all-excitatory networks studied before, except that all neurons should now be
inhibitory. Again explore how the properties of the input determine the properties of the network response.
Using the same random connectivity and external inputs that lead to the same mean firing rates, what is the main
difference between all-inhibitory and all-excitatory networks?

2. Additional parameters that are relevant in a network, like the synaptic transmission delay, have a rather strong
influence on the activity dynamics in recurrent networks. Systematically vary this particular parameter and
describe the consequences you observe. Make sure you vary it only in small steps, as the network might react
quite sensitively.

NEST Desktop generally allows to set up big networks with weak recurrent synapses, or smaller networks with strong
recurrent synapses. To see the impact of the transmission delay of recurrent synapses on the network activity, the
recurrent contribution to the network activity needs to be high enough. Neurons communicate with other neurons in
the central nervous system using both electrical and chemical signals depending on the transmitter system.

16.3.3 Recurrent networks of excitatory and inhibitory neurons

We will now get back to the neocortex and add the missing 20% of inhibitory neurons to the recurrent network. Each
of the two subpopulations is now conceived as a random recurrent network in its own respect, and the two subnetworks
are mutually coupled with each other in a random fashion. This means that we now have to track four connectivity
parameters, for the following types of synapses: 𝐸 → 𝐸, 𝐸 → 𝐼 , 𝐼 → 𝐼 , 𝐼 → 𝐸. Although it is interesting and
relevant to vary them independently, it is recommended to use the same connection probability of 10% throughout all
types of synapses, and to use exactly the same strength 𝐽 > 0 for all excitatory synapses (𝐸 → 𝐸, 𝐸 → 𝐼) and same
strength ˘𝑔𝐽 < 0 for all inhibitory synapses (𝐼 → 𝐼 , 𝐼 → 𝐸). The number 𝑔 > 0 is a unit-less factor describing how
dominant inhibition is in the network. The value 𝑔 = 4 is special, because in this setting the relatively small number
of inhibitory neurons is exactly compensated by an increased strength of inhibitory synapses.

1. Set up a random recurrent network according to the prescription given above. Fix a value of 𝑔 = 5 while
you search for good values of the other parameters. First of all, the strength 𝐽 of excitatory synapses must be

16.3. Network dynamics 57

NEST Desktop

matched to the typical input a neuron gets. What is your criterion? As for the other networks considered before,
external excitatory drive will be necessary to induce meaningful activity in this network. Fix a good value for
the rate of the external drive, just above threshold. The goal should be to establish stable activity in the network,
which is characterized by low firing rates, irregular (Poisson-like) spike trains, and a low degree of synchrony
across neurons. Describe your experiences during the parameter search, and formulate your recommendations
how to make this a reproducible and joyful procedure.

2. Whatever configuration you are now working with, the activity should be stable against external perturbations.
In fact, such dynamic stability would be a highly desirable property of any biological system. For example, you
can use an additional DC input and apply a strong depolarizing perturbation to all neurons, mimicking the effect
of a flash of transcranial magnetic stimulation, TMS. After the perturbation is turned off, the network should
return to its previous activity. Is this “return to the fixed point” a fast or a slow process? Can you estimate a time
constant for it?

3. Stable “fixed point activity” is characterized by a tight temporal balance between excitation and inhibition. This
balance can be demonstrated by comparing the time-resolved PSTH fluctuations of the excitatory population to
the inhibitory population. A “scatter plot” may come handy to display the observations made “by eye” in a more
objective way: Simultaneous bin counts of excitatory activity 𝑥 and inhibitory activity 𝑦 make the coordinates
(𝑥, 𝑦) of data points in a two-dimensional display. What is the relation of individual spike trains with the
population activity measured by the PSTH?

4. You should now vary the parameter 𝑔 and document all important changes. Changing this parameter has the
potential to alter the balance between excitation and inhibition. Describe how the balance is affected, and what
the consequences of this for the recurrent network dynamics are.

Video tutorial

58 Chapter 16. Master students

CHAPTER 17

Doctoral students

This section illustrates how NEST Desktop might be used for research in computational neuroscience. A typical
example covers the activity dynamics of neuronal networks with multiple interacting populations.

Topics

17.1 Network models of decision making

Deciding between two alternatives is a very basic, but also a very essential task the brain has to perform. However,
not much is known about how this process is actually implemented in biological brain networks. The stable fixed
point dynamics considered in the previous section does not seem to suggest anything that looks like a decision making
system. The conceptual model that has been suggested for decision making, however, is surprisingly simple: Dividing
the excitatory neuron population into two halves, and arranging the strength of synapses within each population to be
a little stronger than the synapses across populations, the two excitatory populations start to compete with each other.
Depending on the external input each of them gets, one of the two population “wins” by suppressing the other one with
the help of the inhibitory population. If this happens, the symmetry is broken and a “decision” has been made. This
kind of “winner takes all” dynamics in EEI networks is considered as a candidate mechanism for decision making,
e.g. for classification tasks in sensory systems of the neocortex (“cat/dog”, “left/right”, “good/bad”). A very similar
mechanism, based however on splitting the inhibitory population, has been postulated for subcortical brain areas. In
the basal ganglia, for example, decisions are made whether a planned action, for example a movement, is executed or
terminated (“go/nogo”).

To explore decision making with computer simulations, we recommend that you start with the network models that
were prepared for the course. In the navigation sidebar on the left, click with the right mouse button on the projects
icon (contains a brain symbol). Then choose the option “Upload projects” (icon: arrow pointing upwards) from the
dropdown menu (three vertical dots) and upload the file provided in the repository (tba). This is, by the way, a general
method with which you can share models with others, including all settings and parameters.

17.1.1 Decision making in EEI Networks

The provided network model comprises three (instead of just two) subpopulations: two of them are excitatory (a, b),
and one is inhibitory (c). This was achieved by dividing the excitatory population of the model considered in the

59

NEST Desktop

previous chapter into two equal halves. In a fully symmetric setting, the two excitatory populations (a, b) of course do
not behave any different. However, if the symmetry is broken, one of the populations may take over and dominate the
other one. There are different possibilities how this can be achieved.

1. Figure out which manipulations of the network configuration lead to an unequal activation of the two excitatory
populations, for example a stronger activation of population (b). You may test the number of neurons, the
connectivity (synaptic weights or transmission delays) within or across populations, or external input. It is
suggested that you change only one parameter at a time, and reset all the other parameters to their default values.
To account for statistical fluctuations, you should perform repeated simulations for each parameter setting, using
different seeds of the random number generator.

2. What is the exact role of the inhibitory population in the competition process? How does the activation of
inhibitory neurons reflect a decision?

17.1.2 Decision making in EII networks

A decision making network can also be established by dividing the inhibitory population into two halves. In this
scenario, the two inhibitory subpopulations (b, c) are acting as competitors. Very much like in the EEI scenario
considered in the previous section, the goal is to understand which factors contribute a bias in the activation of one
population (b, light blue).

1. Consider now an alternative decision making system, which is based on a EII scenario. You should devise a
strategy to study its behavior similar to the one you developed for the EEI model.

Note: Inhibitory synapses have opposite effects as compared to excitatory ones.

2. What is the exact role of the excitatory population in this process? How does the activation of excitatory neurons
reflect a decision?

17.1.3 Decision making

Perceptual decisions have to be made when there are two conflicting interpretations of the input (e.g. leftward vs.
rightward movement of a subtle stimulus). The brain will then not maintain both interpretations, but rather decides
for one of them and adjusts its behavior accordingly. Typically, the “stronger” input wins, but additional factors (e.g.
memory previous encounters, or random perturbations) might contribute as well. The same holds for action selection,
which is a necessary component to resolve conflicts in the behavioral goals of an animal.

1. Interpret the phenomena observed in simulations of EEI and EII networks in relation to a hypothetical “decision
making” process. What are the requirements to enable “decision making”? Which additional components would
you need for a full-blown decision making system?

60 Chapter 17. Doctoral students

CHAPTER 18

How to deploy NEST Desktop

This guide provides detailed documentation on how to deploy NEST Desktop. You can read the deployment instruc-
tions by clicking one of these images below:

Guides to deploy NEST Desktop

• Deploy with Docker Compose

• Deploy on OpenShift

• Deploy on OpenStack

61

NEST Desktop

62 Chapter 18. How to deploy NEST Desktop

CHAPTER 19

Deploy with Docker Compose

Docker is a virtualization software packaging applications and its dependencies in a virtual container that can run on
any Linux server. It is available for a variety of the operating systems, e.g. Linux, Mac and Windows. For more
information follow the link here.

NEST Desktop and NEST Simulator are prepared in different containers, but you can use docker-compose to
start multiple containers, e.g. NEST Desktop, NEST Simulator. Docker Compose needs the configuration file
(docker-compose.yml).

Here, the guide shows you how to build containers with docker-compose.

63

https://www.docker.com/resources/what-container

NEST Desktop

Requirements

• Docker Compose

Preparation

apt install docker-compose

Get the configuration file ‘docker-compose.yml‘ from GitHub

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop/main/docker-compose.
→˓yml

It will pull images of NEST Desktop from https://hub.docker.com/r/nestdesktop/app) and NEST Simulator can be
started from within the official NEST image (https://hub.docker.com/r/nestsim/nest).

Getting started

Build and start the NEST Desktop and NEST Simulator containers.

docker-compose up --build

NEST Desktop and NEST Simulator are now serving at http://localhost:8000 and http://
localhost:5000, respectively. With CTRL + C you can shutdown these services.

Configurations in docker-compose.yml

Here, you can find the details of the configuration file.

image Get docker image from Docker Hub
container_name Set container name
ports Bind host ports to container ports
command Execute command on container start
environment Set environment variables

Alternatively, you can clone the source code so that you can change the Dockerfile and build custom docker images
on your machine. For more information, visit the page https://github.com/nest-desktop/nest-desktop-docker.

Upgrade images

First stop the containers and shut down services of nest-desktop and nest-server.

docker-compose stop
docker-compose down

Then pull images from docker hub.

docker-compose pull

Afterwards, you can start the services and containers.

docker-compose up --no-start
docker-compose start

Useful commands for docker-compose

List containers.

64 Chapter 19. Deploy with Docker Compose

https://docs.docker.com/compose/
https://hub.docker.com/r/nestdesktop/app
https://hub.docker.com/r/nestsim/nest
https://github.com/nest-desktop/nest-desktop-docker

NEST Desktop

docker-compose ps

If there are no services (nest-desktop and nest-server) in the displayed list, it means that no containers can
be started. You can attach a container for services without starting it using --no-start.

docker-compose up --no-start

Then start the services nest-desktop and nest-server as daemon.

docker-compose start

Stop the services nest-desktop and nest-server.

docker-compose stop

Shutdown the services nest-desktop and nest-server.

docker-compose down

Acknowledgments

Thanks for the help:

• Steffen Graber (Docker Hub for NEST Simulator)

• Jochen Martin Eppler (API Server for NEST Simulator)

65

NEST Desktop

66 Chapter 19. Deploy with Docker Compose

CHAPTER 20

Deploy on OpenShift

This part of the documentation shows how to deploy NEST Desktop on OpenShift resources. In the following, we will
use the deployment process of NEST Desktop on the OpenShift resources of EBRAINS as an example of practice.

Requirements

• OC Client Tools

Deploy NEST Desktop on EBRAINS

EBRAINS provides two OKD infrastructures

67

https://www.okd.io/download.html#oc-platforms

NEST Desktop

• https://okd-dev.hbp.eu for the development.

• https://okd.hbp.eu for the production.

Note: I strongly recommend to use the development page for testing.

Register client for authentication on EBRAINS

To access to NEST Desktop on EBRAINS infrastructure, an authentication is requested. You find the codes on https:
//github.com/nest-desktop/apache2-oidc.

Here are the steps how to setup the authentication for NEST Desktop properly.

bash get-dev-token.sh

Change the configuration file and then create a client for your application.

bash create-client.sh

Keep client_id and client_secret for the okd infrastructure.

Build NEST Desktop on EBRAINS

First, copy the command line from the web console of https://okd-dev.hbp.eu and enter in terminal to login
via oc:

oc login https://okd-dev.hbp.eu:443 --token=<TOKEN>

Get the status of the current project:

oc status

You can find the configurations on https://github.com/nest-desktop/nest-desktop-ebrains. Therein, you have to modify
the environment for EBRAINS authentication, i.e. OIDC_CLIENT_ID and OIDC_CLIENT_SECRET of NEST
Desktop (which is printed after setting up the client for NEST Desktop).

Execute the bash script to deploy the nest-desktop, nest-server and apache2-oidc containers:

bash setup-nest-desktop.sh

Further usage

Scaling up the replicas (pods or nodes):

oc scale --replicas=2 dc nest-desktop

Acknowledgements

Thanks for the help to integrate NEST Desktop on EBRAINS resources:

• Alberto Madonna (Conceptual design of the user authentication)

• Collin McMurtrie (Conceptual design of the user authentication)

• Fabrice Gaillard (Conceptual design of the user authentication)

68 Chapter 20. Deploy on OpenShift

https://okd-dev.hbp.eu
https://okd.hbp.eu
https://github.com/nest-desktop/apache2-oidc
https://github.com/nest-desktop/apache2-oidc
https://github.com/nest-desktop/nest-desktop-ebrains

NEST Desktop

• Jonathan Villemaire-Krajden (Conceptual design of the user authentication)

• Martin Jochen Eppler (For the contacts)

69

NEST Desktop

70 Chapter 20. Deploy on OpenShift

CHAPTER 21

Deploy on OpenStack

The guide provides a step-by-step documentation on how to deploy NEST Desktop on OpenStack resources. For more
information on OpenStack, please follow this link: https://www.redhat.com/en/topics/openstack.

As an example of an OpenStack infrastructure, we show the deployment on bwCloud, which is assigned to the univer-
sities in Baden-Württemberg, Germany. For more information bwCloud, follow the link: https://www.bw-cloud.org/.

Deployers can build an OpenStack image via Packer and Ansible.

Requirements

• Packer

• Ansible (2.3.2.0 or newer)

Deploy NEST Desktop on bwCloud

You can find the source code on https://github.com/nest-desktop/nest-desktop-bwCloud.

1. Download the OpenStack RC File from bwCloud dashboard:

Project -> API Access -> Download OpenStack RC File

2. Source the RC file to login:

71

https://www.redhat.com/en/topics/openstack
https://www.bw-cloud.org/
https://www.packer.io/downloads.html
https://releases.ansible.com/ansible/
https://github.com/nest-desktop/nest-desktop-bwCloud
https://portal.bw-cloud.org/project/api_access/

NEST Desktop

source Project_<userID>-openrc.sh

3. Modify the Ansible configurations in infrastructure/bwCloud/nest-desktop.json.

Set image_name. Values for source_image and networks are taken from bwCloud dashboard.

4. Build an image on bwCloud:

packer build nest-desktop.json

5. Start an instance on the bwCloud dashboard and it will have a public IP of the virtual machine.

Acknowledgements

Thanks for the help to integrate NEST Desktop on bwCloud:

• Bernd Wiebelt

• Jonathan Bauer

• Michael Janczyk

• Manuel Messner

• Christopher Ill

72 Chapter 21. Deploy on OpenStack

CHAPTER 22

How to develop NEST Desktop

This is the developer guide, providing more detail on how to develop NEST Desktop.

Get the source code

The source code of NEST Desktop is hosted on GitHub. Clone NEST Desktop from the GitHub repository:

git clone https://github.com/nest-desktop/nest-desktop
cd nest-desktop

Guides for the development

• Prepare the development environment

• Working on the source code

• Build and publish packages

• User documentation workflow

Guides for the developers

• Command API

• The semantic versioning

• The concept of the interface

• References for images

73

https://github.com/nest-desktop/nest-desktop

NEST Desktop

74 Chapter 22. How to develop NEST Desktop

CHAPTER 23

Prepare the environment

NEST Desktop is written in Vue.js (a web framework written in TypeScript), and also in TypeScript. The Vue code is
transpiled to HTML5 and JavaScript Code. There are multiple ways to develop Vue applications, but my preferred way
(and probably the most common one) to develop NEST Desktop is to use Node.js (and optionally Yarn). Therefore, if
you do not use any of the container systems mentioned below, you will need to install Node.js (for Windows, an easy
installation guide can be found here), which gives you also the possibility to install Yarn.

Requirements

• Python 3.6 or higher

• Node.js, Yarn

• NEST Simulator 3.0 or higher

You can install these requirements in the host system.

However, I prefer to use a Singularity container and leave the host system unchanged. For this, I prepared a Singularity
recipe that build a container with the required packages for the development. You can find the definition file in
singularity/nest-desktop-dev.def for building this Singularity container.

Build an environment with Singularity

The definition file singularity/nest-desktop-dev.def contains an adequate environment to develop and
build NEST Desktop.

Build a singularity image:

singularity build nest-desktop-dev.sif singularity/nest-desktop-dev.def

Go to the shell of singularity container:

singularity shell nest-desktop-dev.sif

75

https://nodejs.org/en/download/package-manager/
https://treehouse.github.io/installation-guides/windows/node-windows.html

NEST Desktop

Node modules

Install node modules for NEST Desktop:

yarn install

Check if any node modules are outdated:

yarn outdated

Upgrade outdated node modules:

yarn upgrade

76 Chapter 23. Prepare the environment

CHAPTER 24

Work on the source code

First, prepare the development environment with the required packages.

yarn serve

The Live Development Server is serving at http://localhost:8080.

Setup

It is possible to install NEST Desktop from source code on a local machine using pip (where it finds setup.py).
The recommended method is to install it in the user’s home directory using the command argument --user.

python3 -m pip install --user -e .
nest-desktop start

Note: Do not forget to start NEST Simulator.

Commit changes

Go to the dev branch for the development.

git checkout dev

Fetch the data from GitHub (download it to your local directory):

git fetch

If required, intergrate the changes from GitHub into your local repository:

git pull

It is recommended to create a new branch for an an implementation of a new feature/goal.

git checkout -b newBranch

77

NEST Desktop

If your changes are ready to be commited, stage and commit them:

git add ...
git commit -m 'This is my commit.'

Finally, push all of them to repository on the internet (and create a merge request afterwards).

git push --set-upstream origin newBranch

78 Chapter 24. Work on the source code

CHAPTER 25

Build and publish package

Building and pushing NEST Desktop on PyPI is a required step for the production. After that, Docker Hub can upgrade
NEST Desktop in the provided Docker image.

Requirements

• setuptools, wheel, twine

The Python Package Index nest-desktop includes an executive command nest-desktop and a Python library
nest_desktop.

Build

The current working directory is nest-desktop.

The building phase contains two steps: First, build a package of NEST Desktop using vue-cli-service.

Initially, you have to upgrade the version of nest-desktop in:

• packages.json

• nest_desktop/__init__.py

Then generate the app package using yarn. It builds the folder nest_desktop/app:

yarn build

The second step is to build a pip package for PyPI:

rm -rf build/ dist/ nest_desktop.egg-info/

Then generate the distribution packages of nest-desktop for PyPI:

79

https://pypi.org/project/nest-desktop/

NEST Desktop

python3 setup.py sdist bdist_wheel

Upload

Finally, the package is ready for the the publication. You can upload the pip-package of nest-desktop to PyPI:

python3 -m twine upload dist/*

Do not forget to commit the changes you made and set a new version tag in git.

git tag -a v3.0 -m 'v3.0.0'
git push --tags

80 Chapter 25. Build and publish package

CHAPTER 26

Command API

This documentation guide provides detailed information about the command nest-desktop.

Show the usage of the nest-desktop command:

nest-desktop

Options for nest-desktop:

nest-desktop status|start|stop|restart [-h <HOST>] [-p <PORT>]

Commands

status display the status of NEST Desktop

start start a new server instance for NEST Desktop

stop stop a server instance running on <HOST>:<PORT>

restart restart (i.e. stop and start) a server on <HOST>:<PORT>

Arguments

-h <HOST> use hostname/IP address <HOST> for the server [default: 127.0.0.1]

-p <PORT> use port <PORT> for opening the socket [default: 8000]

81

NEST Desktop

82 Chapter 26. Command API

CHAPTER 27

User documentation

We use Sphinx to generate the documentation and Read the Docs to publish it. Sphinx uses reStructuredText. To learn
more about the syntax, check out this quick reference.

Requirements

• Sphinx

• Read the Docs Sphinx Theme

Current working directory: nest-desktop/docs. To install Sphinx and the Read the Docs theme via pip:

python3 -m pip install sphinx sphinx_rtd_theme

Development: Render HTML offline

Build the documentation which your created with Sphinx in the docs folder offline:

rm -r _build/; make html

Publication: Push to ReadTheDocs

The documentation files for the main branch are automatically rebuilt (and updated) each time a push is made to the
repository. The docs for other versions depend on the GitHub tags.

83

https://www.sphinx-doc.org/en/master/
https://readthedocs.org/
https://www.sphinx-doc.org/en/master/
https://github.com/readthedocs/sphinx_rtd_theme

NEST Desktop

84 Chapter 27. User documentation

CHAPTER 28

The semantic versioning

During the course of development, the implementation of (new) features in NEST Desktop will be reviewed for com-
patibility. In this concept a general rule of the semantic versioning NEST Desktop was introduced that the operational
capability of the application can be guaranteed. Please be aware of the differences to the official Semantic version-
ing standard! The formal convention of the version releases for specifying compatibility in NEST Desktop uses a
three-part number:

A major number

It is incremented for the compatibility with the NEST Simulator. It implies that the major version of the NEST Desktop
(2.x.x) has to match with the one of NEST Simulator (currently 2.x.x).

A minor number

It is a breaking feature such as a new library or a minor changes of the data structure. It means that this version could
cause the compatibility issues and the user might reset the data of the page.

A patch number

It is a bugfix and non-breaking features were added to the code. The user is able to work with different patch versions
of NEST Desktop and NEST Simulator.

85

https://semver.org/
https://semver.org/

NEST Desktop

86 Chapter 28. The semantic versioning

CHAPTER 29

Concept of the interface

General layout concept of the interface.

NEST Desktop contains three columns with clear function. The left column shows the navigation to route pages. The
center column renders the main content of the page, whereas the right column displays the controller content for the
modification.

Pages

NEST Desktop has three router views (Project, Model, Settings). The icons buttons on the left side navigate to these
views.

Page colors

The color code was taken from Adobe. The colors of the pages are taken from the split complementary of the NEST
default color (#ff6633).

Navigation sidebar (left)

The navigation shows either projects or models.

Router view (center)

The router view renders the page content via the URL. The project page displays a tab containing the network editor,
the activity explorer and the lab book. The model page shows the model description which can be used in NEST
Simulator. The setting page shows an overview of all settings for various components of the app.

Controller sidebar (right)

The controller enables users to change values or configurations. The network controller displays a list of nodes and
connections with their parameters.

87

https://color.adobe.com/de/create/color-wheel

NEST Desktop

88 Chapter 29. Concept of the interface

CHAPTER 30

References

Images

nest.svg https://nest-simulator.org/

spike-transmission-carlos.svg Carlos Toledo Suárez, a former PhD of Abigail Morrison’s lab at the
Jülich Center, who passed away in 2013.

89

https://nest-simulator.org/

NEST Desktop

90 Chapter 30. References

Bibliography

[BCF] Bernstein Center Freiburg, Faculty of Biology, University of Freiburg, Freiburg, Germany

[HCI] Department IV - Computer Science, Human-Computer Interaction, University of Trier, Trier, Germany

[INM-6] Institute of Neuroscience and Medicine (INM-6), Jülich Research Center, Jülich, Germany

[NMBU] Norwegian University of Life Sciences, As, Norway

91

	NEST Desktop
	Abstract
	History
	Releases
	How to use NEST Desktop
	Setup Guide
	Via Docker Compose
	Via Singularity
	Via Python Package

	Usage Guide
	Construct neuronal networks
	Simulate neuronal networks
	Explore network activity
	Manage projects
	Explore neuron models and devices

	Troubleshootings
	Error messages
	Frequently asked questions (FAQ)

	Use NEST Desktop on EBRAINS
	How to lecture with NEST Desktop
	Course design
	Didactic concept
	First steps toward simulating brains
	How to prepare a course protocol
	Bachelor students
	Direct current injection into single neurons
	Noise current injection into single neurons
	Excitatory and inhibitory synaptic input into single neurons
	Poisson input into single neurons

	Master students
	The Hodgkin-Huxley theory of the action potential
	Point neuron models with conductance-based synapses
	Network dynamics

	Doctoral students
	Network models of decision making

	How to deploy NEST Desktop
	Deploy with Docker Compose
	Deploy on OpenShift
	Deploy on OpenStack
	How to develop NEST Desktop
	Prepare the environment
	Work on the source code
	Build and publish package
	Command API
	User documentation
	The semantic versioning
	Concept of the interface
	References
	Bibliography

