

NEST Desktop

[image: NEST Desktop]
Hello there! :-)

NEST Desktop is a web-based GUI application for NEST Simulator,
an advanced simulation tool for the computational neuroscience.

It’s so great that you want to use NEST Desktop!

Conceptual approach

NEST Desktop enables to construct a neuronal network model graphically and to perform a simulation experiment.
Thus, no programming skills are required.

[image: _images/conceptual-approach.png]
You can tryout NEST Desktop as a restricted live demo [https://nest-desktop.github.io/app] without the simulation backend.

Content structure

The documentation is organized in four sections.
Select the appropriate section that fits your needs:

 I am a user.

 The user learns how to build networks, parameterize nodes and
 links, and perform simulations on the graphical interface.

 I am a lecturer.

 The lecturer learns how to teach computational neuroscience using
 NEST Desktop.

 I am a deployer.

 The deployer learns how to set up NEST Desktop on a machine via
 the Python Package, Docker or Apptainer installation.

 I am a developer.

 The developer learns the source code architecture of NEST Desktop
 and how to contribute code or enhancements to the project.

Version info

On ReadTheDocs, it is possible to select versions of this documentation.
These versions basically relate to the program versions (as found in the GitHub repository).
This can be noticed when clicking on the “Edit on GitHub” text at the top right.

Since the changes between patch level versions (e.g. 3.0.0 and 3.0.1) are usually not noticeable,
we show a single branch for the recent minor version releases (e.g. ‘3.0’ for all 3.0.x releases).
This branch contains all patch releases and always points to the latest patch release of that release branch.
Please keep this in mind when searching for information on a specific version of NEST Desktop!

	General

	[image: Documentation status] [https://nest-desktop.readthedocs.io] [image: MIT License] [https://github.com/nest-desktop/nest-desktop/blob/main/LICENSE] [image: Paper] [https://doi.org/10.1523/eneuro.0274-21.2021]

	GitHub

	[image: Latest version] [https://github.com/nest-desktop/nest-desktop] [image: GitHub repository commit activity] [https://github.com/nest-desktop/nest-desktop/commits/main] [image: GitHub repository forks] [https://github.com/nest-desktop/nest-desktop/network/members] [image: GitHub repository stars] [https://github.com/nest-desktop/nest-desktop/stargazers]

	Docker

	[image: Docker version] [https://hub.docker.com/r/nestsim/nest-desktop] [image: Docker image size] [https://hub.docker.com/r/nestsim/nest-desktop] [image: Docker pulls total] [https://hub.docker.com/r/nestsim/nest-desktop]

	Python

	[image: Python version] [https://pypi.org/project/nest-desktop/] [image: Python downloads per month] [https://pypi.org/project/nest-desktop/]

	Conda

	[image: Conda version] [https://anaconda.org/conda-forge/nest-desktop] [image: Conda downloads total] [https://anaconda.org/conda-forge/nest-desktop]

	AppImage

	[image: AppImage version] [https://github.com/nest-desktop/nest-desktop-appImage/releases] [image: AppImage downloads] [https://github.com/nest-desktop/nest-desktop-appImage]

	Snap

	[image: Snap version] [https://snapcraft.io/nest-desktop]

About

	Events

	Releases

	Predecessor software

Abstract

An educational application for neuroscience

Simulation software for spiking neuronal network models matured in the past decades
regarding performance and flexibility.
Nevertheless, the entry barrier remains high for students and early career scientists
in computational neuroscience since these simulators typically require programming skills
and a complex installation.
Here, we describe an installation-free graphical user interface (GUI) running
in the web browser, which is distinct from the simulation engine running anywhere,
on the student’s laptop or on a supercomputer.

This architecture provides robustness against technological changes in the software stack
and simplifies the deployment process for students/autodidacts and for teachers.
Our new open source tool, NEST Desktop 1, comprises graphical elements for creating
and configuring network models, running simulations, as well as for visualizing and analyzing the results.
NEST Desktop allows students to explore important concepts in computational neuroscience
without the need to learn a simulator control language before.

Our experiences so far highlight that NEST Desktop helps advancing both quality
and intensity of teaching in computational neuroscience in regular university courses.
We view the availability of the tool on public resources like the European ICT infrastructure
for neuroscience EBRAINS as a contribution to equal opportunities 2.

A paper for NEST Desktop is available on eNeuro [https://www.eneuro.org/content/8/6/ENEURO.0274-21.2021].

References

	1

	https://github.com/nest-desktop/nest-desktop

	2

	https://ebrains.eu/service/nest-desktop

Funding

This project has received funding from the European Union’s Horizon 2020 Framework
Programme for Research and Innovation under Specific Grant Agreement No. 785907
(Human Brain Project SGA2) and No. 945539 (Human Brain Project SGA3).
This project was funded by the Helmholtz Association Initiative and Networking Fund
under project number SO-092 (Advanced Computing Architectures, ACA).
This work was supported by the DFG Excellence Cluster BrainLinks-BrainTools (grant EXC 1086).

Citation

In order to cite NEST Desktop in general, please use the DOI 10.5281/zenodo.5037050 [https://doi.org/10.5281/zenodo.5037050] for all versions (always redirecting to the latest version).
If you like to refer to a single version, you can find these also on Zenodo,
e.g. 10.5281/zenodo.5037051 [https://doi.org/10.5281/zenodo.5037051] for Version 3.0.
You can use the reference to the paper for NEST Desktop
(DOI: 10.1523/ENEURO.0274-21.2021 [https://doi.org/10.1523/ENEURO.0274-21.2021]) mentioned above as well,
if that is more appropriate in the context of your reference.

You will also find the exports for the citation managers on Zenodo and eNeuro.

Events

2023

	13 - 24 Feb

	BSc course “Simple Neuron Models” at BCF 1, Freiburg, Germany.

	18 Jan

	Part of the talk at CENIA, presented by Markus Diesmann, Santiago, Chile.

	18 - 20 Jan

	Poster at 7th HBP Student Conference [https://www.humanbrainproject.eu/en/education-training-career/HBPSC2023/], Madrid, Spain.

2022

	07 - 10 Nov

	Session talk “NEST Desktop” at Simulate with EBRAINS [https://flagship.kip.uni-heidelberg.de/jss/HBPm?m=showAgenda&meetingID=242], online.

	13 - 16 Sep

	Poster “NEST Desktop: Explore new frontiers” at Bernstein Conference 2021 [https://abstracts.g-node.org/conference/BC22/abstracts#/uuid/b205c368-bbfa-473f-a249-eb866c9fdffc], Berlin, Germany.

	20 - 21 Jul

	Talk “NEST Desktop” at HCI Summer Colloquium, Trier, Germany.

	16 Jul

	NEST Desktop is part of the onsite tutorial “T1: From single-cell modeling to large-scale network dynamics with NEST Simulator.” of CNS 2022 [https://www.cnsorg.org/cns-2022-tutorials], presented by Jasper Albers, Pooja Babu and Charl Linssen, Melbourne, Australia.

	03 - 09 Jul

	Part of the workshop “NEST Workshop: network and plasticity” at 9th BNNI [http://bionn.matinf.uj.edu.pl/events/bnni2022/#program], presented by Jasper Albers, Krakau, Poland.

	31 Jun

	Satellite tutorial at CNS [https://ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html], online.

	23 - 24 Jun

	Workshop “NEST Desktop: A “Let’s Play Together” for neuroscience” and Poster “NEST Desktop: Explore new frontiers” at NEST Conference [https://events.hifis.net/event/305/], online.

	13 - 15 Jun

	Workshop at EBRAINS BASSES [https://www.humanbrainproject.eu/en/education/ebrains-workshops/basses/], presented by Johanna Senk, Rome, Italy.

	26 - 28 Apr

	MSc course “Biophysics of Neurons and Networks” at BCF 1, Freiburg, Germany.

	07 - 18 Feb

	BSc course “Simple Neuron Models” at BCF 1, online, (Freiburg, Germany).

2021

	16 Dec

	Talk “NEST Desktop” at HCI Winter Colloquium, online, (Trier, Germany).

	11 Nov

	Published paper “NEST Desktop, an Educational Application for Neuroscience” on eNeuro [https://www.eneuro.org/content/8/6/ENEURO.0274-21.2021].

	14 - 15 Oct

	Break-out session and poster “NEST Desktop” at HBP Summit 2021 [https://summit2021.humanbrainproject.eu/], online (Brussels, Belgium).

	22 Sep

	Talk “Simulation of networks with point neurons (NEST)” at 8th BNNI 2021 [https://www.humanbrainproject.eu/en/education/BNNI2021/], online.

	21 - 23 Sep

	Poster “NEST Desktop” at Bernstein Conference 2021 [https://abstracts.g-node.org/conference/BC21/abstracts#/uuid/4ca9eb7b-5e58-49f2-9a69-1e4b6e57eb76], online.

	03 Sep

	Hand-on Session “NEST Desktop” at EBRAINS & IBRO 2nd Virtual Master Class [https://www.incf.org/training-week/ebrains-ibro-master-class-brain-atlasing-and-simulation-services/], online.

	29 Jul

	Hand-on Session “NEST Desktop” at EBRAINS & IBRO 1st Virtual Master Class [https://www.humanbrainproject.eu/en/education/virtual-masterclass-1/], online.

	13 Jul

	Talk “NEST Desktop” at PhD Seminar [https://www.bcf.uni-freiburg.de/events/phd-postdoc-seminar/2021/20210615_Spreizer], online.

	06 Jul

	Talk “NEST Desktop” at NFDI-Neuro Webinar [https://nfdi-neuro.de/event/nfdi-neuro-webinar-nest-desktop-an-educational-application-for-neuroscience/], online.

	03 Jul

	Tutorial “Interactive design and analysis of point neuron spiking networks with synaptic plasticity using NEST Simulator” , presented by Dr. Linssen, at CNS 2021 [https://www.cnsorg.org/cns-2021-tutorials#T4], online.

	28 - 29 Jun

	Talk “NEST Desktop” at NEST Conference [https://events.hifis.net/event/41/], online (As, Norway).

	16 Jun

	Preprint on bioRxiv [https://www.biorxiv.org/content/10.1101/2021.06.15.444791].

	03 - 07 May

	MSc course “Biophysics of Neurons and Networks” at BCF 1, online (Freiburg, Germany).

	08 - 09 Apr

	“NEST Desktop insitufication” on In-Situ Hackathon, online (HCI).

	08 - 19 Feb

	BSc course “Simple Neuron Models” at BCF 1, online, (Freiburg, Germany).

2020

	30 Sep - 01 Oct

	Hand-on Session and Poster at Bernstein Conference 2020 [https://abstracts.g-node.org/conference/BC20/abstracts#/uuid/f33d04d5-27fc-45b1-9d7a-44e2a0f28360], online (Berlin, Germany).

	18 - 22 Jul

	Tutorial with NESTML, presented by Dr. Linssen, at CNS 2020 [https://www.cnsorg.org/cns-2020-tutorials#T1], online (Melbourne, Australia).

	29 - 30 Jun

	Talk “NEST Desktop” at NEST Conference [https://indico-jsc.fz-juelich.de/event/115/], online (As, Norway).

	02 - 17 Jun

	MSc course “Biophysics of Neurons and Networks” at BCF 1, online (Freiburg, Germany).

	16 Apr

	Presentation and demo at NeuroMat [https://neuromat.numec.prp.usp.br/content/nmweb/presentations/], online (Sao Paulo, Brazil).

	03 - 06 Feb

	Talk and Demo/Hand-on session at HBP Summit and Open Days [https://summit2020.humanbrainproject.eu/] , Athene, Greece.

2019

	28 Nov

	2nd HPAC Platform Training, Heidelberg, Germany.

	20 Oct

	Live demo, presented by Prof. Plesser, at HBP Booth at SfN, Chicago, USA.

	18 - 20 Sep

	Poster/Live presentation at Bernstein Conference [https://abstracts.g-node.org/conference/BC19/abstracts#/uuid/6444712d-2467-4e32-8464-a46a7387b4aa], Berlin, Germany.

	22 Jul

	Talk and Tutorial/Hand-on session at INM-6 3, Julich, Germany.

	18 Jul

	NESTML/NEST-desktop integration workshop, BCF 1, Freiburg, Germany.

	24 - 25 Jun

	Talk and Tutorial/Hand-on session “NEST Desktop” [https://indico-jsc.fz-juelich.de/event/92/material/0/0.pdf] at NEST Conference at NMBU 4, As, Norway.

	16 Apr

	Kick-Off workshop at HCI 2, Trier, Germany.

	25 - 31 Mar

	Tutorial workshop for IICCSSS [http://iiccsss.org/] at BCF 1, Freiburg, Germany.

	11 - 22 Feb

	BSc course “Simple Neuron Models” at BCF 1, Freiburg, Germany.

2018

	26 - 27 Sep

	Poster/Live presentation NEST Desktop [https://abstracts.g-node.org/conference/BC18/abstracts#/uuid-2840bf9b-0d35-4002-ae80-0cb087abf8a8] at Bernstein Conference, Berlin, Germany.

	27 - 28 Aug

	Technical meeting at BCF 1, Freiburg, Germany.

	25 - 26 Jun

	Talk “NEST Web API” [https://indico-jsc.fz-juelich.de/event/71/material/3/2.pdf] at NEST Conference at NMBU 4, As, Norway.

	23 - 27 Apr

	MSc course “Biophysics of Neurons and Networks” at BCF 1, Freiburg, Germany.

	12 - 23 Feb

	BSc course “Simple Neuron Models” at BCF 1, Freiburg, Germany.

2017

	19 - 20 Dec

	Talk “NEST Desktop” [https://indico-jsc.fz-juelich.de/event/52/material/2/0.pdf)] at NEST Conference, Jülich, Germany.

	20 - 22 Nov

	Live presentation with Ad Aertsen at Neural networks mini school [https://www.neurex.org/events/archives/item/304-neural-networks-meeting-mini-school], Strasbourg, France.

	02 - 05 May

	MSc course “Biophysics of Neurons and Networks” at BCF 1, Freiburg, Germany.

	24 Jan

	Talk (Informal Seminar) “NEST Desktop” [https://www.bcf.uni-freiburg.de/events/informal-seminar/announcements/170124_Spreizer.htm] at BCF 1, Freiburg, Germany.

2016

	Dec

	The development start of NEST Desktop.

Footnotes

	1(1,2,3,4,5,6,7,8,9,10,11,12,13,14)

	BCF - Bernstein Center Freiburg, Faculty of Biology, University of Freiburg, Freiburg, Germany

	2

	HCI - Human-Computer Interaction - Department IV - Computer Science, University of Trier, Trier, Germany

	3

	INM-6 - Institute of Neuroscience and Medicine (INM-6), Jülich Research Center, Jülich, Germany

	4(1,2)

	NMBU - Norwegian University of Life Sciences, As, Norway

Releases

v3.2.x

Introduce copy models, compartmental neurons, synapse weight recordings,
code templates and backend status.

	28 Feb 23

	v3.2.0

v3.1.x

Introduce model management, simulation option with Insite.

[image: ../_images/v3.1-lab_book.png]
[image: ../_images/v3.1-spike_activity.png]
[image: ../_images/v3.1-model_view.png]

	01 Jun 22

	v3.1.4

	20 May 22

	v3.1.3

	25 Feb 22

	v3.1.2

	22 Feb 22

	v3.1.1

	18 Feb 22

	v3.1.0

v3.0.x

[image: ../_images/v3.0-lab_book.png]
[image: ../_images/v3.0-spike_activity.png]
[image: ../_images/v3.0-model_view.png]
Use Vue.js for web framework.

	19 Jul 21

	v3.0.3

	13 Jul 21

	v3.0.2

	09 Jul 21

	v3.0.1

	23 Jun 21

	v3.0.0

v2.5.x

[image: ../_images/v2.5-network_editor.png]
[image: ../_images/v2.5-spike_activity.png]
Define node shapes according to graphical notation of neuronal networks.
Introduce network history to undo changes.

	04 Mar 21

	v2.5.1

	23 Oct 20

	v2.5.0

v2.4.x

[image: ../_images/v2.4-lab_book.png]
[image: ../_images/v2.4-code-editor.png]
Introduce code editor for simulation script.

	15 Jul 20

	v2.4.1

	28 Jun 20

	v2.4.0

v2.3.x

Deploy NEST Desktop on HBP service with OIDC and on bwCloud with ansible.
Use yarn instead of npm.

	23 May 20

	v2.3.2

	22 May 20

	v2.3.1

	22 May 20

	v2.3.0

v2.2.x

[image: ../_images/v2.2-lab_book.png]
[image: ../_images/v2.2-network_editor.png]
[image: ../_images/v2.2-spike_activity.png]
Introduce tabs for project views as well as side bars for navigation and controller.

	27 Jan 20

	v2.2.15

	27 Jan 20

	v2.2.14

	20 Jan 20

	v2.2.13

	16 Jan 20

	v2.2.12

	30 Dec 19

	v2.2.11

	04 Dec 19

	v2.2.10

	04 Dec 19

	v2.2.9

	03 Dec 19

	v2.2.8

	27 Nov 19

	v2.2.7

	27 Nov 19

	v2.2.6

	27 Nov 19

	v2.2.5

	24 Nov 19

	v2.2.4

	24 Nov 19

	v2.2.3

	24 Nov 19

	v2.2.2

	21 Nov 19

	v2.2.1

	08 Nov 19

	v2.2.0

v2.1.x

[image: ../_images/v2.1-spatial_activity.png]
Introduce Three.js for animated activity graph of spatial network.

	05 Nov 19

	v2.1.3

	05 Nov 19

	v2.1.2

	04 Nov 19

	v2.1.1

	29 Oct 19

	v2.1.0

v2.0.x

[image: ../_images/v2.0-lab_book.png]
[image: ../_images/v2.0-network_editor.png]
[image: ../_images/v2.0-spike_activity.png]
Introduce Plotly.js for interactive activity graph.

	02 Oct 19

	v2.0.7

	30 Sep 19

	v2.0.6

	25 Sep 19

	v2.0.5

	25 Sep 19

	v2.0.4

	23 Sep 19

	v2.0.3

	16 Sep 19

	v2.0.2

	15 Sep 19

	v2.0.1

	13 Sep 19

	v2.0.0

v1.x

[image: ../_images/v1.5-lab_book.png]
[image: ../_images/v1.5-neuronal_activity.png]
[image: ../_images/v1.5-spike_activity.png]
NEST Desktop runs in nginx and requires the backend NEST Server [https://github.com/babsey/nest-server].

	23 Jul 19

	v1.5

	31 May 19

	v1.4

	19 Apr 19

	v1.3

	18 Mar 19

	v1.2

	18 Dec 18

	v1.0

v0.x

[image: ../_images/v0.15.3-spike_activity.png]
[image: ../_images/v0.15.3-neuronal_activity.png]
NEST Desktop runs in Electron and requires the backend NEST Server Simulation [https://github.com/babsey/nest-server-simulation].
The app uses Angular as web framework and D3.js for network and activity graphs.

	22 Apr 18

	v0.15.3

	17 Apr 18

	v0.15.1

	28 Feb 18

	v0.15.0

	28 Feb 18

	v0.14.0

	07 Feb 18

	v0.13.0

	29 Jan 18

	v0.12.0

	22 Nov 17

	v0.11.0

	06 Oct 17

	v0.10.0

	20 Jun 17

	v0.9.3

	20 Jun 17

	v0.9.2

	29 Apr 17

	v0.9.1

	28 Apr 17

	v0.9.0

	18 Apr 17

	v0.8.2

	12 Apr 17

	v0.8.1

	10 Apr 17

	v0.8.0

	23 Mar 17

	v0.7.2

	15 Mar 17

	v0.7.1

	15 Mar 17

	v0.7.0

	04 Mar 17

	v0.6.3

	28 Feb 17

	v0.6.2

	27 Feb 17

	v0.6.1

	24 Feb 17

	v0.6.0

	09 Feb 17

	v0.5.5

	09 Feb 17

	v0.5.4

	07 Feb 17

	v0.5.3

	06 Feb 17

	v0.5.2

	23 Jan 17

	v0.5.1

	20 Jan 17

	v0.5.0

	09 Jan 17

	v0.4.0

	09 Jan 17

	v0.3.12

	05 Jan 17

	v0.3.11

	04 Jan 17

	v0.3.10

	04 Jan 17

	v0.3.9

	03 Jan 17

	v0.3.8

	29 Dec 16

	v0.3.7

	21 Dec 16

	v0.3.6

	21 Dec 16

	v0.3.5

	21 Dec 16

	v0.3.4

	20 Dec 16

	v0.3.3

	19 Dec 16

	v0.3.1

	19 Dec 16

	v0.3.0

	14 Dec 16

	v0.2.1

	14 Dec 16

	v0.2.0

	08 Dec 16

	v0.1.0

Predecessor software

nuSPIC

Before NEST Desktop, there existed a soctware called nuSPIC, which targeted a similar goal as NEST Desktop:

Before NEST Desktop, there existed a soctware called nuSPIC, which targeted a similar goal as NEST Desktop:

[image: ../_images/nuspic.png]
nuSPIC is also a web interface working with NEST Simulator.
However, the development is inactive and the project is outdated.

See also

	Online prototype nuSPIC [http://nuspic.g-node.org/]

	Vlachos, I., Zaytsev, Y. V., Spreizer, S., Aertsen, A. and Kumar, A. (2013). Neural System Prediction and Identification Challenge Front. Neuroinform. 7:43. doi:10.3389/fninf.2013.00043 [https://doi.org/10.3389/fninf.2013.00043]

	nuSPIC: Neural Systems Prediction and Identification Challenge: Scientists from Freiburg present an online tool to create and analyse neuronal networks. -> BCF News [https://www.bcf.uni-freiburg.de/news/2013/20131227-nuSPIC]

Troubleshootings

Having trouble getting something working? Got a question that the rest of our docs can’t answer?
Maybe we can help with some answers to commonly asked questions and troublesome spots.

Error messages

	Server not found

	Internal server error

	NEST error

Frequently Asked Questions

	NEST Simulator

	Project

	Network

	Simulation

	Activity
	Activity chart graph

	Activity animation graph

	Model

Services

	EBRAINS

Server not found

NEST Desktop cannot find the NEST Simulator.
It has two possible reasons:

	NEST Desktop has a wrong URL under which it tries to contact the server.
([image: See] the FAQ for NEST Simulator.)

	NEST Server is not running. Try to (re-)start NEST Server.

	Use simulation service (e.g. on EBRAINS):
The user authorization to the backend might be not granted.

Hint

Check NEST Server is running (if the URL is localhost:52425):

	in URL of Browser: http://localhost:52425

	in Terminal: curl http://localhost:52425

	in Python: import requests; requests.get('http://localhost:52425')

Internal server error

It says that the back end (i.e, nest-server) ended with an internal error.
In this case, you have to review the log of the back end.

NEST error

NEST Simulator produces a value error, e.g. The value must be strictly negative..
Please have a look at the official NEST documentation [https://nest-simulator.readthedocs.io/en/latest/index.html]
to obtain the correct syntax for the commands.

NEST Simulator

	How can I change the URL of the NEST Simulator?
	On the settings page you can find (and change) the URL of the NEST Simulator.

	How can I check NEST Simulator?
	On the settings page you can click on a CHECK button.
If a chip with NEST version appears, this indicates that the selected NEST Simulator is working.

Project

	How can I create a new project?
	There are two ways: You find a button [image: plus] in the project toolbar and
an item + New Project in the projects menu .

See also

	Create new project in project toolbar

	Create new project in projects menu

	How can I duplicate a project?
	In the project menu you will find a button [image: duplicate] to clone a project.

See also

	Duplicate project in the project list

	How can I rename the current project?
	You find a method to rename the current project in the project menu or
you can edit the name in the project bar directly.

See also

	Rename project in the project list

	Edit project name in project bar

	How can I save projects?
	You find a save icon [image: save] appended in each loaded project item.

See also

	Save a project in the project list

	How can I delete projects?
	You find a button [image: delete] in the project toolbar or
a menu item [image: delete] in the project menu to delete multiple projects.

See also

	Delete multiple projects in the project toolbar

	Delete a project in the project list

	How can I export projects?
	You find a button [image: export] in the project toolbar or
a menu item [image: export] in the project menu to export projects to a file.

See also

	Export multiple projects in the project list

	Export a project in the project list

	How can I import projects?
	You find a button [image: import] in the project toolbar or a menu item [image: import]
in the project menu to import multiple projects from various sources.

See also

	Import project in the project toolbar

	Import project in the project list

Network

	Where can I find the network controller?
	You will find the network controller by clicking on the network icon ([image: network]) in the right controller.
Models, nodes and connections are stacked as card panels in the network controller.

See also

	Network controller

	How can I empty a network?
	In the network graph you will find top right a trash button that empties the network.

See also

	Network graph

	How can I create nodes?
	In the network graph you can click with the right mouse button,
then a selector panel appears to select an element type of the new node.

See also

	Create nodes in the usage guide

	How can I connect nodes?
	In the network graph you can click on the connector of a source node,
then move the mouse towards the target node and click on the target node.

See also

	Connect nodes in the usage guide

	How can I connect a node with multiple nodes?
	Hold down the ALT key when clicking on the target nodes.

	How can I (un)select a node / a connection?
	When a node or connection is selected you can press ESC to unselect it
or in the network graph you can click on another node
or connection to select it (and to remove the selection of the former one).

Click on the background area of the network graph
or on the selected entry in the network controller to unselect a node or connection.
An other method to (un)select is to click on the node label
or the connection toolbar in the network controller on the right side again.

	How can I colorize nodes?
	You will find the method to color in the context menu of the node
by clicking with the right mouse button on the node shape in the network graph
or the node toolbar in the controller.

	How can I change the color cycle of nodes?
	In the network settings you will find the way to change the color cycle.

	How can I delete a node / connection?
	You will find this method in the context menu of the node or connection
by clicking with the right mouse button on the element graph in the network graph
or on the colored toolbar in the network controller.

	How can I change the node model?
	You can click on model name twice and it opens a dropdown displaying models.

See also

	Change node model in network controller

	How can I modify parameters?
	You will find a list of parameters in the network controller.
If they are not visible, click on the model selection to check the visibility of the parameters.

See also

	Modify parameters in the controller

	How can I reset all parameter values?
	In the context menu of a node or connection you will find the method
to reset all parameters of the corresponding node or connection.

	How can I reset a parameter value?
	In the context menu of a parameter (by clicking the right button on a parameter)
you can find the method to reset a parameter.
It also shows the default value of the parameter.

	How can I set a connection to “inhibitory”?
	You can assign a negative value to the weights in the connection controller.

	How can I get the distribution for parameters?
	You are able to activate the distribution of the parameters in the export mode.

	How can I get a spatial node?
	In the context menu of the node, you can (un)set the spatial mode of the node.

	How can I generate grid/free positions?
	When the node is spatial, a position item will replace the population item.
Click on the position item to open a popup of the position specifications.
Modifying a value will generate positions, at the end of the panel
you will find a button to generate positions.

	How can I generate an array?
	In the context menu of the array parameters (e.g. the spike times of a spike generator)
you will find a method to generate an array.

Simulation

	How can I start a simulation?
	Click on the SIMULATE button in top right of the page to start the simulation.

	How can I stop a simulation?
	Unfortunately, the option to stop/cancel a simulation is not implemented in NEST Simulator
and therefore not supported by NEST Desktop.

	How can I activate “simulation after change”?
	In the menu of the SIMULATE button (by clicking on its caret at the right side)
you will find an option to activate simulation after change.

	How can I activate “simulation after load”?
	In the menu of the SIMULATE button (by clicking on its caret at the right side)
you will find an option to activate simulation after load.

	How can I activate “simulation after checkout”?
	When you go to another network version of the history, it automatically starts the simulation.
In the menu of the SIMULATE button (by clicking on its caret at the right side)
you will find an option to activate simulation after checkout.

	Where can I find the kernel controller of the simulation?
	The kernel controller can be shown by clicking on the engine icon on the right side.

See also

	Kernel controller

	Where can I set the simulation time?
	You will find the simulation time in the kernel controller.

See also

	Change simulation time in the kernel controller

	Where can I change the time resolution of the kernel?
	You will find the time resolution for the NEST Simulator in the kernel controller.

Warning

Please verify that the recording interval is equal to
or larger than the time resolution of the simulation!

See also

	Change time resolution in the kernel controller

	Where can I change the seed?
	You can find the seed value in the kernel controller.

See also

	Change seed in the kernel controller

	How can I activate the seed randomization?
	You can find an option to activate the seed randomization in the kernel controller.

See also

	Activate seed randomization in the kernel controller

	How can I find the Python script code of the simulation?
	On the right side you can find a code symbol <\> opening the code editor.

See also

	Code editor

Activity

	How can I download the activity data of a single recorder?
	In the context menu of the recorder you will find a menu option to download events of this recorder.

	How can I download activity data of all recorders?
	In the projects dialog to download projects you can find options to download network activities of projects.

Activity chart graph

	How can I drag/zoom the chart?
	You will find those modes in the mode bar (top) in the activity graph.
For dragging or zooming, simple click on the chart.

	How can I reset the view to the default one?
	Click on the house icon in the mode bar (top) to reset the view to the default one.

	How can I download a plot of the chart?
	Click on the photo icon (top) to download the plot of the chart.
You can choose which format will be used.

	Where can I find the activity controller?
	You can find the activity controller by clicking on the chart icon on the right side.

	How can I modify the bin size of the PSTH?
	In the chart controller you will find a tick slider to modify the bin size.

	How can I change the labeling of axes or the title?
	Click on the label of the axe or the title to change it.

	How can I hide/show dots/lines?
	Click on the legend to alter the visibility of the dots/lines.

Activity animation graph

	How can I rotate the camera?
	Click and hold the (left) mouse button on the animation area and then move it around to rotate the camera.

	Where can I find the activity controller?
	You can find the activity controller by clicking on the axes icon on the right side.

	How can I stop an animation?
	Go to the animation controller. You will find a pause icon to stop the animation.

	How can I increase/decrease the animation speed?
	In the animation controller you will find a forward or backward button to alter the animation speed.

	How can I change the colorscale of dots?
	In the animation controller you will find a colormap of the current colorscale.
A little below you will find an options to select the colorscale.

	How can I change the size of dots?
	In the animation controller you can find a slider to adjust the dot size.

	I cannot find the “trailing” effect box for dots in the activity controller?
	It only works with the animation of the spikes.

Model

	What is the terminology of this model?
	This model includes neuron, synapse and device (stimulus / recorder) models.

	How can I read the documentation of a model?
	In the context menu of a node you will find a documentation of these models,
but also in the model section.

EBRAINS

	Why cannot I find NEST Simulator?
	Sometimes the issue is resolved when you check NEST Simulator.

If not, the problem lies in the expired token for the user authentication of the EBRAINS platform.
This happens in a new session when you re-visit the page after the browser is closed.

A simple solution is to reload the page (CTRL + SHIFT + R) so that you can re-login.

Warning

Please avoid to accidentally delete site data you want to keep!
Ensure to export your projects if you want to keep them -
the save button stores them only in the browser storage!

[image: User] User guide

The user guide provides detailed documentation of the GUI of NEST Desktop.

How to use NEST Desktop

 Setup guide

 Learn how to install NEST Desktop

 Basic usage

 Learn the basic steps how to use NEST Desktop

Advance guide

Views

 Project view

 Allows users to construct networks and analyse
 activity

 Model view

 Contains different components to explore models.

Graphs

 Network graph

 Shows nodes and connections in the network editor

 Activity chart graph

 Activity can be displayed in a chart graph for spikes and analog
 signals

 Activity animation graph

 Animated activity graph for the spatial network of neurons with
 geographical positions

Features

 Copy model

 The user learns how to copy a model.

 Compartmental neuron

 The user learns how to create a compartmental neuron.

 Synapse model

 The user learns the implementation of a synapse model in a simulation.

External software

 Simulate with Insite

 Learn how to use NEST Desktop with Insite.

 NeuroRobotics Platform

 Learn how to use NEST Desktop with NRP.

 ViSimpl

 Learn how to use NEST Desktop with ViSimpl.

Setup Guide

This guide provides a detailed documentation on how to install and start both instances: NEST Desktop and NEST
Simulator.

Note

To enable the full functionality of NEST Desktop, you also need to install NEST Simulator on your computer.
NEST Simulator provides an API Server which can forward requests to the simulation engine.
In summary, you have to start NEST Server as well.

You can find the detailed information on NEST Server in
NEST Simulator user documentation [https://nest-simulator.readthedocs.io/en/latest/connect_nest/nest_server.html].

 Docker compose

 Deploy NEST Desktop and NEST Simulator with Docker Compose.

 Apptainer (former Singularity)

 Deploy NEST Desktop and NEST Simulator with Apptainer.

 Conda

 Deploy NEST Desktop and NEST Simulator with Conda.

 Python

 Deploy NEST Desktop from Python Package.

 AppImage

 Start NEST Desktop as AppImage.

 Snap

 Install and start NEST Desktop with Snap.

Docker (or Docker Compose) and Apptainer provide both NEST Desktop and NEST Simulator, so you have everything you need
to run NEST Desktop and NEST Simulator.

Alternatively, you can install NEST Desktop with the conda or pip command.

You are able to download and start the NEST Desktop application, e.g. AppImage (without NEST Simulator) or Snap (with
NEST Simulator) in Linux.

If you only have NEST Desktop (i.e., NEST Simulator is not running as back-end), you can create networks but cannot run
simulations within the application.
In this case, you have to start NEST Server in a terminal or with Docker.

See also

NEST Server user documentation [https://nest-simulator.readthedocs.io/en/latest/connect_nest/nest_server.html]

Docker Compose [image: linux] [image: windows] [image: apple]

[image: ../../_images/docker-compose-logo.png]
Docker is a virtualization software packaging applications and its dependencies.
Docker Compose is a tool for running multi-container applications on Docker which uses the Compose file format.

See also

For further information, please see the official page of Docker Compose [https://github.com/docker/compose].

Installation

Docker Compose is available on multiple platforms.
This guide demonstrates some of the ways to install it on Linux, Windows and Mac.

Linux [image: linux]

Install Docker and Docker Compose in Terminal

apt install docker.io docker-compose

Windows [image: windows] and macOS [image: apple]

Docker Compose is included in Docker Desktop for Windows and macOS.
For more information, take a look at the installation guide of Docker Desktop [https://www.docker.com/get-started].

Pull and start Docker containers

1. Get the configuration file for Docker Compose
(docker-compose.yml [https://raw.githubusercontent.com/nest-desktop/nest-desktop/main/docker-compose.yml])

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop/main/docker-compose.yml

	Start NEST Desktop and NEST Simulator in a single command:

docker-compose up

Now, the service starts the containers for NEST Desktop and NEST Simulator.
You can use NEST Desktop in the web browser at http://localhost:54286.

The installation is now complete!
Now you can start constructing networks for the simulation!

See also

For more information (like running the containers without root password, etc.),
please read the full documentation of NEST Desktop Docker [https://github.com/nest-desktop/nest-desktop-docker].

Apptainer [image: linux]

[image: ../../_images/apptainer-logo.png]
Apptainer, former Singularity, is an application container for Linux systems.
For more information read the full documentation of Apptainer
here [https://apptainer.org/].

Get recipes

	Clone a working copy from the repository and go to the folder:

git clone https://github.com/nest-desktop/nest-desktop-apptainer
cd nest-desktop-apptainer

	Register the bash command for NEST Desktop Apptainer:

export PATH=$PATH:$PWD/bin/

Note

You will have to repeat this every time you end a terminal session.
If you like to register this command permanently,
please proceed according to the full documentation [https://github.com/nest-desktop/nest-desktop-apptainer].

Build image

	Build the Apptainer images (it will ask for sudo password):

nest-desktop-apptainer build

Note

This command (and the following ones) need to be executed inside the folder
where the container files are located, i.e. the nest-desktop-apptainer folder.

Start container

	Start the Apptainer instances of NEST Desktop and NEST Simulator:

nest-desktop-apptainer start

Now NEST Desktop is started.
You can use NEST Desktop in the web browser at http://localhost:54286.

The installation is now complete!
Now we can start constructing networks for the simulation!

For more information read the full documentation of NEST Desktop Apptainer [https://github.com/nest-desktop/nest-desktop-apptainer].

Warning

If the apptainer (esp. NEST Simulator) is running, your system is exposed for unauthorized access!

Conda [image: linux] [image: windows] [image: apple]

[image: ../../_images/conda-logo.png]
Anaconda provides packages for NEST Desktop [https://anaconda.org/conda-forge/nest-desktop].
and NEST Simulator [https://anaconda.org/conda-forge/nest-simulator].
These packages can be installed with Conda.
We highly recommend installing at least version 3 of NEST.
Since NEST 3, the API server (i.e., NEST Server) is already implemented.

Install with Conda

	Create a Conda environment called nest3 and install NEST Simulator:

conda create -n nest3 nest-simulator

	Activate the Conda environment nest3:

conda activate nest3

	Install the dependencies for the API Server of NEST Simulator:

conda install flask flask-cors RestrictedPython gunicorn

	Install NEST Desktop

conda install nest-desktop

Start with Conda

	Start NEST Server as the back end:

The API Server for NEST Simulator is referred to as NEST Server.

nest-server start

NEST Server is now running at http://localhost:52425.

	Start NEST Desktop (in another terminal session):

nest-desktop start

NEST Desktop is now started and available in the web browser at http://localhost:54286.

The installation is now complete!
Now you can start constructing networks for the simulation!

See also

For more information read the full documentation of the command API
here.

Python [image: linux] [image: windows] [image: apple]

[image: ../../_images/python-logo.png]
PyPI contains packages of NEST Desktop and NEST Simulator.
We recommend to install both packages.

NEST Simulator

	Install NEST Simulator (SKIP THIS STEP IF YOU HAVE NEST 3 INSTALLED.):

Read the full installation guide of NEST Simulator here [https://nest-simulator.readthedocs.io/en/latest/installation/index.html].

We highly recommend installing NEST 3. With NEST 3, the API server (i.e., NEST Server) is already implemented.

	Install the dependencies for the API Server of NEST Simulator:

pip install flask flask-cors RestrictedPython gunicorn

	Start NEST Server as the back end:

The API Server for NEST Simulator is referred to as NEST Server.

nest-server start

NEST Server is now running at http://localhost:52425.
You can find the detailed information on NEST Server here [https://nest-simulator.readthedocs.io/en/latest/connect_nest/nest_server.html].

NEST Desktop

	Install NEST Desktop

NEST Desktop is available on PyPI and can be installed with the pip command:

pip3 install nest-desktop [--user] [--upgrade]

For more information, please read the complete installing guide here.

	Start NEST Desktop (in another terminal session):

nest-desktop start

Now NEST Desktop is started.
You can use NEST Desktop in the web browser at http://localhost:54286.

The installation is now complete!
Now you can start constructing networks for the simulation!

See also

For more information read the full documentation of the command API
here.

AppImage [image: linux]

[image: ../../_images/App-image-logo.svg]
You can download an AppImage from the releases page [https://github.com/nest-desktop/nest-desktop-AppImage/releases].

Click on the .AppImage file to open NEST Desktop.

Note

Start the API Server of NEST Simulator manually before you open NEST Desktop.

Snap [image: linux]

[image: ../../_images/snapcraft-logo.png]
You can download NEST Desktop via Snap.

snap install nest-desktop

The installation is now complete!
Now you can start constructing networks for the simulation!

Basic Usage Guide

This is a basic usage guide for the Graphical User Interface (GUI) of NEST Desktop.

Note

If you want to see a quick start guide for in NEST Desktop,
we have prepared a video
showing the steps how to Construct networks and Explore activity.

Once you start NEST Desktop, you can see the start page
containing an image of a laptop with the NEST logo on its screen.
At the bottom it shows a short description of NEST Desktop (left)
and some useful links and the current version (right).

[image: ../../_images/start-page.png]

Note

You can reload the page if NEST Desktop has somehow crashed.

First steps

The video shows the first steps to construct a network and explore its activity.

 Project view

Project view

NEST Desktop has a project management helping you to organize your networks and network activity.

[image: ../../_images/project-view.png]
It contains a:ref:project-view-projects-menu in the system bar to manage multiple projects, a Project navigation sidebar, a Project bar and content for Project subpages.

If you want to explore the network activity of the project,
you have to start the simulation before ([image: See] Simulate networks).

Projects menu

[image: ../../_images/projects-menu.png]
The projects menu will be displayed when the user clicks the PROJECTS entry in the system bar (top black bar).
The opened project menu shows the same options which are displayed as buttons in the toolbar.

In the menu you find options to create a new project ([image: plus]) as well as to reload ([image: reload]), export ([image: export]), import ([image: import]), delete ([image: delete projects]) or reset ([image: reset]) multiple projects.

Project dialog

It is possible to import projects from different sources:
You can choose between drive (local storage), GitHub and
URL (other one than GitHub URLs).

[image: ../../_images/projects-import.png]

Also you are able to export multiple projects.
The selection checkbox appears when the project is loaded (check the validate box by clicking it).

[image: ../../_images/projects-export.png]

Project navigation sidebar

[image: ../../_images/project-nav.png]
In the navigation sidebar you find a Project toolbar and then a Project list.

Project toolbar

[image: ../../_images/project-toolbar.png]
At the top of the navigation sidebar, you see a toolbar containing buttons
to create a new project ([image: plus]) as well as to reload ([image: reload]), export ([image: export]), import ([image: import]), delete ([image: delete projects]) or reset ([image: reset]) multiple projects.

Clicking on the buttons to export, import or delete projects opens a dialog showing a list of project ([image: See] Project dialog).

Warning

You should export projects that you want to keep: If you refresh your browser
or delete the web page cookie, the project will be lost!

Creating a new project lets you construct a network from scratch
([image: See] Construct networks).

Project list

[image: ../../_images/project-menu.png]
Below the buttons you find the search field and a list of the projects.
Select a project to load it for the usage.
Once a project is loaded, a save icon ([image: save-ok]) appears on the right side.
You can move the mouse on the project item, it shows three vertical dots ([image: vertical-dots])
for a menu with options to rename ([image: rename]), unload ([image: unload]), reload ([image: reload]), duplicate ([image: duplicate]), export ([image: export]) or delete ([image: delete]) this project.

Warning

Unless you click on the save button, the project is not stored in the database of the
web page cookie and is lost when you reload the page!

Another important remark is that NEST Desktop stores only projects
with neuronal networks in the cookie database,
but all activity (i.e. simulation results) will be lost after page reload!

Project bar

[image: ../../_images/project-bar.png]
The project bar contains tabs for Project subpages,
the project name, the Network history and
the Simulation button.

Tip

It is useful to give project a proper name so that you can recognize your projects quickly.

Network history

[image: ../../_images/network-history.gif]
After every network change, NEST Desktop pushes a snapshot of the current network to the edit history list.
With that history of the network, you can undo or redo the network changes.
Loading a snapshot from this history is called checkout network.

Simulation button

[image: ../../_images/simulation-button.gif]
You can click on the SIMULATE button to start the simulation.

Project subpages

Network editor

[image: ../../_images/network-editor.png]

Activity explorer

[image: ../../_images/activity-explorer.png]

Lab book

[image: ../../_images/project-lab-book.png]

 Model view

Model view

This is the guide for the model view in NEST Desktop.

[image: ../../_images/model-view.png]
Below the icon for the project view, you can see the one of the model view,
where you can read the model description,
explore model activities or
edit model configurations.

Models menu

[image: ../../_images/models-menu.png]
By clicking the right mouse button on the model icon, a menu appears
where you can select actions for models.

Model dialog

You can import models from various sources,
e.g. a file you uploaded from you computer, a file from a GitHub repository or from a specified URL.

[image: ../../_images/models-import.png]

Note

Model files should be formatted in JSON.

When you select Import from GitHub, choose an element type
and then a JSON file of your desired model group which includes all functions of synapse currents.

The table shows a list of models from which you can select which ones you want to import.

Model navigation sidebar

[image: ../../_images/model-nav.png]
In the navigation sidebar you find a Model toolbar and then Model List.

You can select a model to read its documentation,
its activity or to edit its configuration.

Model toolbar

[image: ../../_images/model-toolbar.png]
At the top of the navigation sidebar, you see a toolbar containing buttons
to reload ([image: reload]), export ([image: export]), import ([image: import]), delete ([image: delete models]) or reset ([image: reset]) multiple models.

Model List

Above the model list you will find a search field and tags
which you can use to filter the models in the list.
Selected filter tags appear as chips under the search field.

In order to select a tag you need to click on the filter icon left to the search field.
Multiple filter tags can be applied.
Selected filter tags can be removed (click on [image: close]).

Import models

Go to the model view and find your desired synapse model.
Next, click on the icon [image: vertical-dots], then select a menu item [image: import] import to import it from GitHub.

Filter models

[image: ../../_images/models-filter-tag.png]
It is possible to select filter tags to display only models with certain properties.
The following filter tags are available:

	Installed:
	Show models which are installed in NEST Desktop

	GitHub:
	Show models which are provided in an own GitHub repository [https://github.com/nest-desktop/nest-desktop-models]

	Neuron/stimulator/recorder/synapse:
	Show models of the selected element type

Model subpages

Model documentation

[image: ../../_images/model-doc.png]
It shows the official user documentation of a selected model which also can be found on http://nest-simulator.readthedocs.io/en/latest/models/.

Model explorer

[image: ../../_images/model-explorer.png]
You can explore the activity dynamics of neuron models only.

[image: ../../_images/model-explorer-projects.png]
First, choose a simulation to see the neuronal response to a specific stimulus device.

Then start the simulation by clicking on the SIMULATE button.

You can use the code editor to see changes in activity.

Note

It is important to disable the Insite pipeline for the simulation (in the settings).

Model editor

The model editor allows you to make changes in parameter specifications,
e.g. default value, unit, label or inputs.

[image: ../../_images/model-editor.png]

 Network graph

Network graph

[image: ../../_images/network-graph.png]

Node labels

Each node graph is labeled to identify the model of the node.
By default, it creates a direct current generator (dc) for a stimulus
and a voltmeter (vm) for a recording device.
Neurons are just labeled with n.
You can find the full label of the node model in the network controller.

Node colors

[image: ../../_images/node-shapes.png]
Nodes and connections contain parameter configurations
which are displayed in the controller panel in the side navigation.
The color of nodes helps you to associate the network graph with the controller
as well as the corresponding visualization of the network activity.
The color of lines is defined by the source node.

Node shapes

The specific shape defines an element type of a node:

	Hexagon

	A stimulus device alias stimulator is an instrument
which only produces signals towards target nodes.

	Parallelogram

	A recording device alias recorder is also an instrument
which observes states of a recordable node.

	Others

	A neuron node is the core engine of a neuronal network model
which received inputs from other nodes and produces specific output using intrinsic equation. For more information about neuron shapes, see the next section.

Neuron shapes

[image: ../../_images/neuron-shapes.png]
The shape of neurons is represented differently by the set of synaptic weights of their connections.

	Square

	Neurons without connections or mixed (positive and negative) synaptic weights to neurons

	Triangle

	Neurons with excitatory connections to neurons (all synapse weights are positive)

	Circle

	Neurons with inhibitory connections to neurons (all synapse weights are negative)

 Activity chart graph

Activity chart graph

The chart graph contains graphical panels organized in vertical stacks.
Chart panels are introduced specifically to explore the network activity by mouse interaction.
The simulation produces two different types of data sets:
Spike events (recorded by spike recorder) contain times and sender ids whereas analog signals contain continuous
quantities from the recording devices (voltmeter or multimeter).

See also

Use controller for activity graph

[image: chart-line] Analog signals

[image: ../../_images/activity-chart-graph-step-input.png]
By default, it displays a line trace of the membrane potential.

[image: ../../_images/activity-chart-graph-noise.png]
With noise input (noise generator), it shows noise behavior (fluctuation) of the membrane potentials and
histogram of distributed values.

[image: chart-scatter-plot] Spike activity

[image: ../../_images/activity-chart-graph-spike.png]
By default, it displays a raster plot of the spike times as well as a time histogram of spikes.

[image: ../../_images/activity-chart-graph-spike-value-histogram.png]
It displays a value histogram of the inter-spike intervals (ISI) as well as of the coefficients of variation of the ISI
(CV of ISI) for the population.

[image: ../../_images/activity-chart-graph-spike-sender-histogram.png]
It displays spike count, average Inter-spike interval (ISI) and coefficient of variation (CV of ISI) for each sender,
e.g. neuron.

 Activity animation graph

[image: axis-arrow] Activity animation graph

It displays an animated 3D graph for the spatial network
forming layers in topology whose neurons have geographical positions.

See also

	Use controller for activity graph

Analog signals

[image: ../../_images/anim-analog-signals.gif]
Analog signals contain continuous quantities from the recording devices (voltmeter or multimeter).

It is possible to display an animated 3D graph for the spatial network forming layers in topology
whose neurons have geographical positions.

Each box represents a neuron in its geographical position.
Values of the analog signals can be visualized using the colors of recorded event
(here, it shows the color map spectral).

Spike activity

[image: ../../_images/anim-spike-activity.gif]
Spike events contain times and ids of the senders collected by the spike recorder.

Spikes can be visualized as transient blobs appearing in the animated 3D graph.
To follow the spike activity better, the trail length can be increased.

Optionally, trails can be faded after the spike time,
and a growing or shrinking mode can also be applied.

 Controller sidebar

Controller sidebar

Network controller

[image: ../../_images/network-controller.png]
The network controller displays cards of models, nodes and connections.

See also

	Copy models

	Compartmental model

	Synapse model

Kernel settings

[image: ../../_images/kernel-settings.png]
The simulation parameters can be adjusted in the right sidebar.
They are contained in the NEST Simulator code (more information below),
so they will be passed to the NEST Simulator whenever a simulation is started.

In the Kernel settings, the slider local number of threads allows to set
the number of processes used by the NEST Simulator.

It is possible to edit the simulation resolution.

Note

Here, you should be aware of the created load on the NEST Simulator as well:
Small values for the resolution size create many calculations and data points.
Therefore, selecting small values for the simulation resolution can lead to
freezes and lags, so please be patient when you choose a small number.

The seed of the random number generator can also be modified.
The same seed produces the same simulation output.

It is possible to activate randomized seed that it generates new seed before each simulation.

The simulation time can be set as well (in Milliseconds).

Code editor

[image: ../../_images/code-editor.png]
NEST Desktop generates textual code from the constructed network.
The generated code can be executed in any Python interpreter.
This way, the code semantics of the NEST Simulator is understandable and easy to learn.

The script code starts with importing required modules (import ...) and resetting the simulation kernel (nest.ResetKernel()).
It is necessary, because the old settings/imports of previous simulations have to be removed.
Otherwise, errors may occur, e.g. with duplicate imports.

The simulation kernel can be configured by nestSetKernelStatus(...).

The graphical representatives of the nodes deliver arguments to the block of the nest.Create(...) function.

Furthermore, the properties of connections are integrated
in the block of the nest.Connect(...) function.

The function nest.Simulate(...) triggers the simulation of your constructed network.

All recording nodes fill a block to collect activities containing neuronal properties,
e.g. node ids and positions, and activity events.

Activity controller

[image: ../../_images/activity-graph-mode.png]
The activity controller displays different content depending on the visualization mode
(abstract or spatial) of the activity graph.

Activity chart controller

Every chart panel has an own controller card fur individual customization.
Other chart models can be chosen individually for each panel
by clicking on the card toolbar in the activity controller.

Analog signals

[image: ../../_images/activity-graph-panels-analog.png]
By default, NEST Desktop shows traces of the analog signals as a function of time.
A panel with a histogram of values can be added when you select it in the + ADD PANEL dropdown menu.

When something doesn’t work properly, you can reset the panels to default by clicking on RESET.

You can add more recorded signals to the panel when it comes from multimeter.
Node records appear as chips in the cards, which allow you to change the colors of the corresponding traces and bars.

Spike activity

[image: ../../_images/activity-graph-panels-spike.png]
By default, a raster plot of the spike times as well as a histogram for spike times is shown.

Activity animation controller

[image: ../../_images/activity-anim-controller-analog.png]
The animated graph displays activity (analog signals or spikes) for the spatial network
forming layers in topology whose neurons have geographical positions.

Values of the analog signals can be visualized using the colors of recorded targets.
Here, it shows the color map spectral for the value scales (from min to max).
You can change the color map in the dropdown menu between the input fields
of the min and max values.

Additionally, an other geometry model (box or sphere) can be chosen.

We recommend to try out many different options for the animation graph
to find the best representation, as the optimal ones depend heavily
on the simulation data and the intended use of the visualization.

Activity statistics

[image: ../../_images/activity-stats.png]
It displays multiple panels for each recording device.
In each panel a table shows the activity statistics of recorded elements (rows)
of a node (population).

In spike events, the columns show the spike counts, mean and
standard deviation of \(ISI\) (inter-spike interval)
as well as \(CV_{ISI}\) (coefficient of variation in inter-spike intervals).

In analog signals (e.g. membrane potentials), the columns show the mean
and standard deviation of the values.

 Copy models

Copy models

NEST Simulator provides a function to copy a model together with its set of parameters.
The nest.CopyModel() function is useful when multiple populations
or synapses should be created with the same set of parameters.
This simplifies the work a lot, as you can see in the example below:

	Code with CopyModel

	Code without CopyModel

	# Copy node models
nest.CopyModel("iaf_psc_alpha", "brunel", params={
 "C_m": 250,
 "E_L": 0,
 "I_e": 0,
 "V_m": 0,
 "V_reset": 0,
 "V_th": 20,
 "t_ref": 2,
 "tau_m": 20,
 "tau_syn_ex": 0.5,
 "tau_syn_in": 0.5,
})

 # Create nodes
 n1 = nest.Create("brunel", 100)
 n2 = nest.Create("brunel", 25)

	# Create nodes
n1 = nest.Create("iaf_psc_alpha", 100, params={
 "C_m": 250,
 "E_L": 0,
 "I_e": 0,
 "V_m": 0,
 "V_reset": 0,
 "V_th": 20,
 "t_ref": 2,
 "tau_m": 20,
 "tau_syn_ex": 0.5,
 "tau_syn_in": 0.5,
})
n2 = nest.Create("iaf_psc_alpha", 25, params={
 "C_m": 250,
 "E_L": 0,
 "I_e": 0,
 "V_m": 0,
 "V_reset": 0,
 "V_th": 20,
 "t_ref": 2,
 "tau_m": 20,
 "tau_syn_ex": 0.5,
 "tau_syn_in": 0.5,
})

How to copy models - step by step

[image: ../../_images/copy-model-step1.png]
Click on the MODEL tab in the network controller and then select a model to copy.
Then confirm with a click on COPY.

[image: ../../_images/copy-model-step2.png]
Enter the name of the new model. If you like to have other model parameters than
the default one, just click on the model title and select the parameters you want to change.
This opens the sliders and fields to edit their values.

[image: ../../_images/copy-model-step3.png]
Choose the copied node model for your node (e.g. in the nodes list).

Note

Copied synapse models can also be applied for synapses (analogously as above).

 Compartmental model

Compartmental model

NEST Simulator is actually a simulation tool of point-neurons but it also provides a model cm_default which is a neurons with compartments.
Here, the guide shows the steps to create a simple neuron with compartments.

Step by step guide

[image: ../../_images/compartmental-neuron-step1.png]
First import cm_default from GitHub and create a node with cm_default.
Then open node selection popup, add compartments ([image: plus]) and select compartment parameters to modify.
Add receptors ([image: plus]) in each compartment and select receptor parameters to modify.

Click on the chips (soma 1, dendrite 1, …) of a compartment to see its content.

[image: ../../_images/compartmental-neuron-step2.png]
You can modify the values in each compartment and and its receptors.

Note

Use multimeter to record events from various compartments.

 Synapse model

Synapse model

NEST Desktop is able to apply synapse models to the connections between neurons.
Here, we show the steps how to observe neuronal activity in aspect of short-term plasticity and how to measure synaptic weights.

Import synapse model

First, you have to import synapse models.

See also

	Import models in dialog

Connect neurons with non-static synapse

[image: ../../_images/tsodyks-synapse-controller.png]
After you have initially built the neurons with their connections, you can select another synapse model (Here: Tsodyks synapse).
Configure the parameter values for facilitating or depressing the synapse.

Observe effects of short-term synapses

[image: ../../_images/neuronal-activity-tsodyks.png]
After the simulation you might register changes of PSP of neurons receiving spike inputs from other neurons via non-static synapses.

Measure synaptic weights

[image: ../../_images/copied-synapse-model.png]
A weight recorder is not a typical recorder like others.
It can only be assigned to a synapse model to measure its weight.

First, import WEIGHT RECORDER from GitHub.
You need to copy the synapse model whose weight should be recorded.
Select the copied synapse model for an existing connection between neurons.

Create a node with WEIGHT RECORDER and connect it to a connection
(use the connection as the target instead of a node).
You can see in the copied synapse model that it is assigned to WEIGHT RECORDER.

[image: ../../_images/weight-recorder-graph.png]

After the simulation, add a new panel showing only weights.

[image: ../../_images/weight-recorder.png]

 Simulate with Insite

Simulate with Insite

[image: Insite]
This is a guide to show how to use NEST Desktop with Insite.

Insite is a recording backend module which is also usable with NEST Simulator.
Basically, with Insite, neuronal or network activity can be observed during the simulation.

Note

Simulations with Insite need to be run with the Insite docker images
nest-module and access-node.
The best method is to use Docker Compose, which also deploys NEST Desktop and Insite.
For more information, please read the deployment guide of Insite.

Check if Insite is running

[image: ../../_images/settings-insite.png]
In the settings page you can check whether the Insite backend is running.
When it is disabled, you can toggle the slide to enable it.

Enable simulation with Insite

[image: ../../_images/code-editor-toolbar-insite.png]
After successfully receiving a ping from the Insite access node of the backend,
you can activate the button Insite (second from left) in the toolbar of the code editor.
Then, NEST Desktop generates the script such that Insite is used during the simulation.

Script code for simulation with Insite

The Insite module has to be loaded into the NEST kernel.
Preferentially load the insitemodule after importing NEST:

nest.Install('insitemodule')

Next, check wether the parameter record_to of any recording device
(e.g. spike recorder, multimeter or voltmeter) has to be modified:

...
recorder.set({"record_to": "insite"})
...

Now, the Insite recording module collects activity events from the recording devices in the NEST Simulator.
NEST Desktop receives activity from the Insite access node on another port (default: 52056).

See also

For more information about Insite, please visit the official
documentation of Insite [https://vrgrouprwth.github.io/insite/] from the VR Group of RWTH Aachen.

Acknowledgements

Thanks for integrating Insite in NEST Simulator and NEST Desktop:

	Simon Oehrl (Conceptual design for Insitufication in NEST Desktop)

	Marcel Krüger (Collaboration on Insitufication in NEST Desktop)

 Use NESET Destkop with NRP

Use NESET Destkop with NRP

[image: NRP]
This is a guide to show how to use NEST Desktop with NRP (Neuro-Robotic Platform).

The NRP enables users to perform virtual experiments on virtual objects
(e.g. robots, robotic arms) or on virtual animals (e.g. rats).

In our case we use NRP to learn neuronal activity dynamics of the “robot brain”
according to a thought experiment by the cyberneticist
Valentino Braitenberg [https://en.wikipedia.org/wiki/Valentino_Braitenberg].

His thought experiment demonstrated a simple concept of the brain interacting with the environment with a simple machine.
The simplest concept of this so-called Braitenberg vehicle <https://en.wikipedia.org/wiki/Braitenberg_vehicle> shows direct connections from two sensors to two individual wheels.
This implies, that the signal strength controls the rotation speed of the wheel.

[image: Neuro Robotics Plattform]

In our experiment, our robot (“Husky”) acts similar to the Braitenberg vehicle.
Additionally to the basic setup in “Husky”, we implanted a “robot brain”
receiving electrical signals from the sensors, processing them
and transferring signals to motors/engines.
In summary, the robot brain controls the movement and thus our robot “Husky” is able to react to the environment.

In the NRP experiment, we see our robot “Husky” and two monitors showing a screen color,
e.g. blue, red, green.
The user can change the screen color.
During the live experiment, the Husky rotates itself during a non-attractive situation
(blue and green screen).
However, when one of these monitors shows an attracting color (red)
and the camera sees it, the Husky moves towards to it.

In NEST Desktop we can observe the spike activities of the “Husky brain”.

How to perform a simulation with NRP and NEST Desktop

See also

	Deploy NEST Desktop with NRP.

First, open two browser windows/tabs, one for NEST Desktop and another for the NRP page.
You can place two windows side-by-side to see both at the same time.

In NEST Desktop import the project “Husky experiment” (from GitHub).
Investigate the network and prepare the simulation.

In the NRP you have to clone and launch the Husky experiment.
Then, you can start the experiment in the virtual environment .
Here, you can see that the robot with the “Husky” network (the “Husky”) is rotating.
Now, switch the screen color of a monitor to red.
Watch until the “Husky” moves toward the red screen.

Observe the spike activity in NEST Desktop (recorded by Insite).

See also

For this approach, we need to run the simulation with Insite as recording backend.

When you want to learn how to use NEST Desktop with Insite,
please read Simulate with Insite.

Acknowledgements

Thanks for the collaboration on NRP and NEST Desktop:

	Viktor Vorobev (Collaboration on NRP and NEST Desktop)

	Marcel Krüger (Insite as recording backend)

	Fabrice Morin (Contact person of NRP)

	Jochen M. Eppler (NEST Server MPI)

	Benedict Feldotto (Implementation of NEST Server in NRP)

 Use NEST Desktop with ViSimpl

Use NEST Desktop with ViSimpl

[image: ViSimpl]
ViSimpl visualizes neural activity from brain simulation data.
It displays spike activity in space and can be co-used with NEST Desktop.

See also

For this approach, we need to run the simulation with Insite as recording backend.

When you want to learn how to use NEST Desktop with Insite,
please read Simulate with Insite.

Preparation

First, download the Docker Compose configuration file for NEST Desktop and Insite.

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop-docker/main/examples/insite/docker-compose.yml

Then, pull the docker images using Docker Compose.

docker-compose pull

Afterwards, you can start NEST Desktop (with Insite).

docker-compose up

For ViSimpl, download the (binary) AppImage from the page [https://vg-lab.es/visimpl/#downloads],
make it executable and then open it.

VERSION=1.8.3
wget https://vg-lab.es/apps/visimpl/latest-release/visimpl-$VERSION-x86_64.AppImage
chmod +x visimpl-$VERSION-x86_64.AppImage
./visimpl-$VERSION-x86_64.AppImage

Hint

You can place NEST Desktop and ViSimpl side by side to see them both.

How to use NEST Desktop with ViSimpl

[image: ViSimpl]
Steps

	In NEST Desktop, make sure that both backends (NEST Simulator and Insite) are running.

	Run the simulation of the network with Insite as recording backend.

	In ViSimpl, click on the REST button to get data from Insite (check that you use the correct URL).

Hint

	Increase the Request size to 10 000 spikes in the REST dialog that it collects spikes faster.

	It shows spatial dots representing neurons and spikes are displayed in glowing mode.

Hint

	Increase the Simulation timestep to 1ms in Simulation Playback Configuration.

	Increase the Delay to 5ms in Visual Configuration.

Acknowledgements

Thanks for the collaboration on ViSimpl and NEST Desktop:

	Félix De Las Pozas Álvarez (Collaboration on ViSimpl and NEST Desktop)

	Marcel Krüger (Insite as recording backend)

	Óscar David Robles Sánchez (Lead developer of ViSimpl)

 Lecturer guide

[image: Lecturer] Lecturer guide

This section gives directions for lecturers who want to teach computational neuroscience with NEST Desktop.
Using computer simulations, students are able to explore models
ranging from single neurons to large neuronal networks.
Numerical experiments of increasing complexity help to understand how brain networks function
and what the features of their dynamic behavior are.

Note

This section assumes that you have prior knowledge of how to use NEST Desktop.
If you have not used NEST Desktop before, please read the User Documentation first (User guide).

Course organisation

To support the organization of a course, we provide some hints for course instructors:

	Course design

	Didactic concept

Additionally, we provide course materials to be handed out to participants:

	First steps toward brain simulation

	How to prepare a course protocol

Course topics

This guide shows how you can teach the biophysics of neurons, synapses
and large networks of the brain to students using NEST Desktop.
Video tutorials illustrate important aspects of the course work.
The provided material could be used to prepare handouts for students.

Bachelor students

This section provides sample assignments for students with little prior knowledge.
The focus lies on the activity dynamics of single neurons.
In all assignments we use iaf_psc_alpha as our neuron model.
It is studied how a neuron responds to different types of input.

	Direct current injection into single neurons

	Noise current injection into single neurons

	Excitatory and inhibitory synaptic input into single neurons

	Poisson input into single neurons

Master students

This section covers advanced topics for students with previous knowledge in neurobiology.
Here, we cover the activity dynamics of single neurons and of neuronal networks.

	The Hodgkin-Huxley theory of the action potential

	Point neuron models with conductance-based synapses

	Network dynamics

Doctoral students

This section illustrates how NEST Desktop might be used for research in computational neuroscience.
A typical example covers the activity dynamics of neuronal networks with multiple interacting populations.

	Network models of decision making

 Course design

Course design

A course with NEST Desktop can be organized for students at different levels of university education.
The course can be held in a computer lab,
allowing for personal interaction with other course participants and tutors.
Alternatively, the course can be held online,
where students use their own computers at home and interact by video chat.
For both options, NEST Desktop is deployed in a virtual machine
that is controlled by the students via a standard web browser.

A typical course could be scheduled as a one-week block course
with fixed hours for complementary lectures, technical tutorials and consultation hours.
The complementary lectures provide the basic background information
needed to understand the course assignments.
The technical tutorials explain step by step the operation of NEST Desktop.
The consultation hours give students an opportunity to ask the tutors questions about the course assignments.
Students can also post their questions and comments to the teaching staff by email.

Specific sample assignments are provided for students with different background knowledge.

 Didactic concept

Didactic concept

NEST Desktop focuses on teaching university students, for whom significant programming skills cannot be assumed.
The goal is to give them an introduction to computational neuroscience,
and illustrate how computer simulations are used in the field.
NEST Desktop provides an intuitive graphical user interface to NEST,
which is actually a script-based simulation tool widely used in research.
The idea is that students approach and understand important concepts in neuroscience
by means of interactive construction, simulation and analysis of neuronal network models.
This functionality is enabled by visual elements that can be manipulated with the computer mouse.
No script-based programming is required at this stage.
Thanks to this intuitive approach, learning is fast,
and students can devote their time and attention to neuroscientific content rather than code syntax and data structures.

NEST Desktop still implements the standard workflow in the computational sciences:
model creation, numerical simulation, statistical analysis and visualization of the simulation outcome.
This logic represents another didactic dimension of NEST Desktop,
beyond lowering the threshold for novices to use complex and powerful simulation engines like NEST.
In addition, it is possible to inspect the automatically generated NEST code and even change it before simulation.
This way, the students get some insight into the script-based interface of NEST, which enables more complex simulations.

For a typical course in computational neuroscience,
the following combination of three course elements has proven to be effective:

	A theoretical introduction to computational neuroscience using slide-based presentations,
possibly enhanced by the interactive use of NEST Desktop as a demonstrator during the lecture.

	An interactive tutorial explaining how NEST Desktop can be employed to work on course assignments.

	Structured lab reports exploiting the capabilities of NEST Desktop with regard to creation, simulation
and analysis of models, potentially prepared in small working groups.

Please refer to the various examples of specific assignments offered in this documentation.

 First steps toward brain simulation

First steps toward brain simulation

In this course, students will learn how computer simulations are employed in brain research.
Sometimes, these simulations are very close to experiments,
and a viable goal may be to mimic the known biological reality as good as possible.
In other cases, the motivation is rather to devise a strategy for entirely new experiments.
In this case, a computer simulation is more like a thought experiment,
leading to a new hypothesis how things might work.
This is the promise and the potential of computational neuroscience.

In experiments with animals or humans, brain activity must be recorded with suitable advanced instruments
(e.g. electrodes, optical instruments, or brain scanners).
This is exactly what researchers also do in simulations.
For that reason, simulated data typically looks very much like experimental data,
and they have to be analyzed like experimental data.
To some degree, therefore, this is also a course on neuroscientific data analysis.
In contrast to experiments with biological brains,
in a simulation one has access to much more detailed information about the inner workings.
As a consequence, computer simulations can sometimes provide insight that goes beyond
what is achieved by experiments, even with latest techniques.
This sets the stage for what students can expect from this course,
and what students need to do to get the most out of it.

Specifically, students learn how to …

 	select a neuron model

 	construct a neuronal network model

 	apply a stimulus to the network

 	record the activity of neurons

 	run a simulation

 	visualize the results

 	analyze the activity data

 	write a protocol of a simulation

 How to prepare a course protocol

How to prepare a course protocol

The course focuses on the function of synaptically coupled neuronal networks in the brain.
Step by step, simulation experiments of increasing complexity will be performed.
The students’ task is to document what they did, why they did it, and what was the outcome,
using precise language and appropriate terminology.
In addition, students will need to design meaningful illustrations and parameter tables describing the simulation.

How to achieve this?

Simulations with NEST Desktop can be exported to PDF, PNG or SVG files.
For PDF export, students can increase the zoom factor of the browser before printing the page.
Image files can be imported to a document processor,
e.g. LibreOffice or LaTeX for annotated illustrations of the simulation.
It is important, however, that the writing is focused,
and images to import into the protocol are carefully selected.
As a final step, the protocol will be exported to a single PDF file
and submitted by email to the course instructors.

Protocols must be concise, complete and correct.
For each assignment, students must separately address the following four aspects:

	What is the scientific question or problem that is approached by the simulation?
Use correct terminology in descriptions.
Keep neurobiological aspects and mathematical modeling concepts apart.

	Which exact simulation setup was used to answer this question?
List and describe all its components (e.g. neurons, devices),
specify how they are connected together (e.g. electrodes, synapses),
and provide tables of all relevant parameters.
Default settings need to be stated at the beginning of each section.
The goal is to make simulations fully reproducible.

	What was the outcome of the simulations performed?
A meaningful set of figures should be selected to underpin the outcome of the simulations.
In most cases, figures are helpful to illustrate the text-based description of the role
of a specific parameter for the behavior of the system in question (e.g. a neuron, a network).

	What are the conclusions in view of the simulation results?
Based on the simulation results obtained, formulate appropriate answers to the original questions.
Distinguish aspects of biology/biophysics and possible issues (e.g. shortcomings) of the numerical model.

 Deployer guide

[image: Deployer] Deployer guide

This guide provides detailed documentation on how to deploy NEST Desktop.
You can read the deployment instructions by clicking one of these images below.

Deploy NEST Desktop

 Docker Compose

 Start multiple Docker services at once via Docker Compose

 OpenShift

 Build and deploy Docker images via web service or CLI commands

 OpenStack

 Build app with Ansible and deploy on a cloud computing platform
 via web service

Deploy with external software

 NEST Desktop with Insite

 Deploy Docker Compose with Insite

 NEST Desktop with NRP

 Deploy Docker Compose with NRP

 Deploy with Docker Compose

Deploy with Docker Compose

[image: Docker Compose]
Docker is a virtualization software packaging applications and its dependencies in a virtual container
that can run on any Linux server.
It is available for a variety of the operating systems, e.g. Linux, Mac and Windows.
For more information follow the link here [https://www.docker.com/resources/what-container].

NEST Desktop and NEST Simulator are prepared in different containers,
but you can use docker-compose to start multiple containers, e.g. NEST Desktop, NEST Simulator.
Docker Compose needs the configuration file (docker-compose.yml).

Here, the guide shows you how to build containers with docker-compose.

	Requirements:
	
	Docker Compose [https://docs.docker.com/compose/]

Preparation

Prepare your local environment by installing Docker (if you have not installed it yet).

apt install docker-compose

Get the configuration file

The configuration file docker-compose.yml contains all setup steps executed by Docker.
Fetch this file from GitHub:

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop/main/docker-compose.yml

It will pull images of NEST Desktop from
https://docker-registry.ebrains.eu/harbor/projects/6/repositories/nest-desktop
and NEST Simulator can be started from within the official NEST image
(https://docker-registry.ebrains.eu/harbor/projects/6/repositories/nest-simulator).

Getting started

Build and start the NEST Desktop and NEST Simulator containers.

docker-compose up --build

NEST Desktop and NEST Simulator are now serving at http://localhost:54286 and http://localhost:52425, respectively.
With CTRL + C you can shutdown these services.

Configurations in docker-compose.yml

Here, you can find the details of the configuration file.

	image

	Get docker image from Docker Hub

	container_name

	Set container name

	ports

	Bind host ports to container ports

	command

	Execute command on container start

	environment

	Set environment variables

Alternatively, you can clone the source code so that you can change the Dockerfile
and build custom docker images on your machine.
For more information, visit the page https://github.com/nest-desktop/nest-desktop-docker.

Upgrade images

First stop the containers and shut down all services “nest-desktop” and “nest-simulator”.

docker-compose stop
docker-compose down

Then pull images from docker hub.

docker-compose pull

Afterwards, you can start the services and containers.

docker-compose up --no-start
docker-compose start

Useful commands

In the following you can find some useful commands for docker-compose.

List containers.

docker-compose ps

If there are no services (nest-desktop and nest-simulator) in the displayed list,
it means that no containers can be started.
You can attach a container for services without starting it using --no-start.

docker-compose up --no-start

Then start all services nest-desktop and nest-simulator as daemon.

docker-compose start

Stop all services, here nest-desktop and nest-simulator.

docker-compose stop

Shutdown all services, here nest-desktop and nest-simulator.

docker-compose down

Set environments

Custom port of NEST Simulator

For some reason the port 52425 is already occupied and
thus starting the server instance of NEST Simulator might cause conflicts.
To resolve this issue, you can change the port to 54321 for NEST Simulator server instance.

You have to change three lines:

	Set the environment NEST_SIMULATOR_PORT: 54321 in nest-desktop service.

	Set the environment NEST_SERVER_PORT: 54321 in nest-simulator service.

	Change the port binding to "54321:54321" in nest-simulator service.

An example configuration for docker-compose would be:

version: "3"

services:
 nest-desktop:
 image: docker-registry.ebrains.eu/nest/nest-desktop:3.2
 environment:
 NEST_SIMULATOR_PORT: 54321
 ports:
 - "54286:54286"

 nest-simulator:
 image: docker-registry.ebrains.eu/nest/nest-simulator:3.4
 environment:
 NEST_CONTAINER_MODE: "nest-server"
 NEST_SERVER_PORT: 54321
 ports:
 - "54321:54321"

Acknowledgments

Thanks for the help:

	Steffen Graber (Docker Hub for NEST Simulator)

	Jochen Martin Eppler (API Server for NEST Simulator)

 Deploy on OpenShift

Deploy on OpenShift

[image: OpenShift]
This part of the documentation shows how to deploy NEST Desktop on OpenShift resources.
In the following, we will use the deployment process of NEST Desktop on the OpenShift resources of EBRAINS as an example of practice.

	Requirements:
	
	OC Client Tools [https://www.okd.io/download.html#oc-platforms]

Deploy NEST Desktop on EBRAINS

[image: EBRAINS]

EBRAINS provides two OKD infrastructures:

	https://okd-dev.hbp.eu for the development and

	https://okd.hbp.eu for the production.

Note

I strongly recommend to use the development page for testing.

Register client for authentication on EBRAINS

To access to NEST Desktop on EBRAINS infrastructure, an authentication is requested.
You find the codes on https://github.com/nest-desktop/apache2-oidc.

Here are the steps how to setup the authentication for NEST Desktop properly.

bash get-dev-token.sh

Change the configuration file and then create a client for your application.

bash create-client.sh

Keep client_id and client_secret for the okd infrastructure.

Build NEST Desktop on EBRAINS

First, copy the command line from the web console of https://okd-dev.hbp.eu and enter in terminal to login via oc:

oc login https://okd-dev.hbp.eu:443 --token=<TOKEN>

Get the status of the current project:

oc status

You can find the configurations on https://github.com/nest-desktop/nest-desktop-ebrains.
Therein, you have to modify the environment for EBRAINS authentication,
i.e. OIDC_CLIENT_ID and OIDC_CLIENT_SECRET of NEST Desktop
(which is printed after setting up the client for NEST Desktop).

Execute the bash script to deploy the nest-desktop, nest-server and apache2-oidc containers:

bash setup-nest-desktop.sh

Further usage

Scaling up the replicas (pods or nodes):

oc scale --replicas=2 dc nest-desktop

Acknowledgements

Thanks for the help to integrate NEST Desktop on EBRAINS resources:

	Alberto Madonna (Conceptual design of the user authentication)

	Collin McMurtrie (Conceptual design of the user authentication)

	Fabrice Gaillard (Conceptual design of the user authentication)

	Jonathan Villemaire-Krajden (Conceptual design of the user authentication)

	Martin Jochen Eppler (For the contacts)

 Deploy on OpenStack

Deploy on OpenStack

[image: OpenStack]The guide provides a step-by-step documentation on how to deploy NEST Desktop on OpenStack resources.
For more information on OpenStack, please follow this link: https://www.redhat.com/en/topics/openstack.

As an example of an OpenStack infrastructure, we show the deployment on bwCloud,
which is assigned to the universities in Baden-Württemberg, Germany.
For more information bwCloud, follow the link: https://www.bw-cloud.org/.

Deployers can build an OpenStack image via Packer and Ansible.

	Requirements:
	
	Packer [https://www.packer.io/downloads.html]

	Ansible (2.3.2.0 or newer) [https://releases.ansible.com/ansible/]

Deploy NEST Desktop on bwCloud

[image: OpenStack]

You can find the source code on https://github.com/nest-desktop/nest-desktop-bwCloud.

	Download the OpenStack RC File from
bwCloud dashboard [https://portal.bw-cloud.org/project/api_access/]:

Project -> API Access -> Download OpenStack RC File

	Source the RC file to login:

source Project_<userID>-openrc.sh

	Modify the Ansible configurations in infrastructure/bwCloud/nest-desktop.json.

Set image_name. Values for source_image and networks are taken from bwCloud dashboard.

	Build an image on bwCloud:

packer build nest-desktop.json

	Start an instance on the bwCloud dashboard and it will have a public IP of the virtual machine.

Acknowledgements

Thanks for the help to integrate NEST Desktop on bwCloud:

	Bernd Wiebelt

	Jonathan Bauer

	Michael Janczyk

	Manuel Messner

	Christopher Ill

 Deploy NEST Desktop with Insite

Deploy NEST Desktop with Insite

The Insite system can be served as a used for NEST Desktop.
It allows to visualize activity of the live simulation.

How to setup NEST Desktop and Insite

First, get the configuration file for Docker Compose.

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop-docker/main/examples/insite/docker-compose.yml

For more information about Docker Compose, please read the
corresponding documentation.

Next, start all services of the Docker Compose file.

docker-compose up

NEST Desktop is now served at http://localhost:54286,
whereas Insite NEST Module and Insite Access Node are served
at http://localhost:52425 and http://localhost:52056, respectively.

See also

	Simulate with Insite

 Deploy NEST Desktop with NRP

Deploy NEST Desktop with NRP

[image: Neuro Robotics Plattform]

The Insite system can be served as a backend for NEST Desktop.
It allows to visualize activity of the live simulation.

How to setup NEST Desktop and NRP

First, download the configuration file of Docker Compose from GitHub:

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop-docker/main/examples/nrp/docker-compose.yml

Then start all services (nest-desktop, insite-nest-module, insite-access-module, nrp-backend and nrp-frontend):

docker-compose up

It takes a few minutes to pull all five docker images and start all containers.

See also

	Be sure that NEST Desktop runs two backends: NEST Simulator and Insite Access Node.
For more information, please read Simulate with Insite.

	For the usage, please read Use NESET Destkop with NRP.

 Developer guide

[image: Developer] Developer guide

The developer guide provides more detail on how to develop NEST Desktop.

Get the source code

The source code of NEST Desktop is hosted on GitHub [https://github.com/nest-desktop/nest-desktop].
You can clone NEST Desktop from the GitHub repository:

git clone https://github.com/nest-desktop/nest-desktop
cd nest-desktop

Development guideline

	Coding conventions

	The semantic versioning

	Concept of the interface

Development stages

	Prepare the environment

	Work on the source code

	Build and publish

	User documentation

	Continuous integration (CI)

 Coding conventions

Coding conventions

Coding conventions help to generate good code.
Therefore, we use some recommendations regarding the coding style.
Most of them follow the conventions used by Git, Linux and other projects [https://namingconvention.org/git/].
Some more central ones will be mentioned in the following.

General coding conventions

	The TypeScript and ESLint options can be inspected in their respective config files.

	An .editorconfig for the basic settings is also available.

	In .rst files, the line length should not exceed 120 by much. This is of course not a fixed rule, but the .editorconfig seems not to be able to guarantee this [https://github.com/editorconfig/editorconfig/issues/387#ruler] and we have not found a convincing alternative. A bigger problem is that there are cases, where longer lines make sense (e.g when they contain very long URLs or within bullet points, the latter with the possibility to use backslashes, which is sometimes quite cumbersome).

	The general coding conventions for Vue, TypeScript and for Python ([image: See] PEP 8 [https://www.python.org/dev/peps/pep-0008/]) should be followed.

	For .ts files, the type any should be used as rarely as possible (and might be removed in the future).

	The general recommendations for good (Vue) code should be applied, e.g. that Variables should be typed whenever possible.

	Coding and naming styles which are not explicitly mentioned here should be kept similar to the already existing code parts in that language.

Git conventions

	Commits
	
	Commits should have a title containing not more than 72 characters.

	The subject line of commit messages should be a short and informative summary of the pull request in the imperative (e.g. ‘Fix bug’ instead of ‘Fixed bug’) and should not end with a full stop.

	The body should focus on the What (the changes in comparison to the original version) and Why, very detailed explanations on the How should be included in the source code as comments.

	If the commit addresses an issue from the issue tracker, at least the issue ID should be mentioned in the commit body (or even in the name).

	This helps to generate release notes and to maintain a Git history where a git log produces helpful output.

	Pull requests
	
	The rules for commits also apply here.

	Please have a look at the GitHub keywords in issues and pull requests [https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/using-keywords-in-issues-and-pull-requests] .

Naming conventions

	Names should be self-explanatory.

	We use camel case for custom .class names in Vue files.

	Kebab case is used for standard .class names in Vue files.

	The coding style overrides other capitalization rules (e.g. ID can become Id).

Sphinx conventions

	For headings, we use the following items: = (with overline!) for parts and for sections: First-level: =, second level: -, third level: ^. Please note that all section headings should not have an overline!

	We usually capitalize only the first letter of a title (or heading), except programming expressions like class names, proper names, etc. We also recommend the Python documentation conventions, as suggested in the official documentation [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections] .

 The semantic versioning

The semantic versioning

During the course of development, the implementation of (new) features in NEST Desktop will be reviewed for compatibility.
In this concept a general rule of the semantic versioning NEST Desktop was introduced
that the operational capability of the application can be guaranteed.

Warning

Please be aware of the differences to the official Semantic versioning [https://semver.org/] standard!

The formal convention of the version releases for specifying compatibility in NEST Desktop uses a three-part number:

A major number

It is incremented for the compatibility with the NEST Simulator.
It implies that the major version of the NEST Desktop (2.x.x) has to match with the one of NEST Simulator (currently 2.x.x).

A minor number

It is a breaking feature such as a new library or a minor changes of the data structure.
It means that this version could cause the compatibility issues and the user might reset the data of the page.

A patch number

It is a bugfix and non-breaking features were added to the code.
The user is able to work with different patch versions of NEST Desktop and NEST Simulator.

 Concept of the interface

Concept of the interface

General layout concept of the interface

NEST Desktop consists of three segments with different purposes.

[image: NEST Desktop]

The layout of NEST Desktop with the three main areas (1) - (3).

The left column (1) shows the navigation to route pages.
The center area (2) renders the main content of the page,
whereas the right column (3) displays the controller for the modification of the content.

Pages

NEST Desktop has three router views (Project, Model, Settings).
The icons buttons on the left side navigate to these views.

Page colors

The color code was taken from Adobe [https://color.adobe.com/de/create/color-wheel].
The colors of the pages are taken from the split complementary of the NEST default color (#ff6633).

Navigation sidebar (left)

The navigation shows either projects or models.

Router view (center)

The router view renders the page content via the URL.
The project page displays a tab containing the network editor, the activity explorer and the lab book.
The model page shows the model description which can be used in NEST Simulator.
The setting page shows an overview of all settings for various components of the app.

Controller sidebar (right)

The controller enables users to change values or configurations.
The network controller displays a list of nodes and connections with their parameters.

 Prepare the environment

Prepare the environment

NEST Desktop is written in Vue.js (a web framework written in TypeScript), and also in TypeScript.
The Vue code is transpiled to HTML5 and JavaScript Code. There are multiple ways to develop Vue applications,
but my preferred way (and probably the most common one) to develop NEST Desktop is to use Node.js (and optionally Yarn).
Therefore, if you do not use any of the container systems mentioned below,
you will need to install Node.js [https://nodejs.org/en/download/package-manager/]
(for Windows, an easy installation guide can be found here [https://treehouse.github.io/installation-guides/windows/node-windows.html]),
which gives you also the possibility to install Yarn.

	Requirements
	
	Node.js, Yarn

	NEST Simulator 3.0 or higher

You can install these requirements in the host system.

However, we prefer to use an Apptainer container and leave the host system unchanged.
For this, we prepared a Apptainer recipe that builds a container with the required packages for the development.

Build an environment with Apptainer

Get an Apptainer recipe:

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop-apptainer/master/recipes/development/dev-node-16-alpine.def

The definition file dev-node-16-alpine.def contains an adequate environment to develop and build NEST Desktop.

Build an Apptainer image:

apptainer build dev-node-16-alpine.sif dev-node-16-alpine.def

Go to the shell inside the Apptainer container:

apptainer shell dev-node-16-alpine.sif

Commands

Install node modules for NEST Desktop:

yarn install

Start a development server:

yarn serve

Note

The command yarn serve uses the configuration file vue.config.js.
This file controls the threads used for the linting (the statical-syntactical code checks).
With the default configuration, all available threads are used to minimize the build time.
This might slow down other programs.
There are cases where you cannot afford that
and prefer a slightly longer execution time.
In that cases, you can either adjust the number of threads in that file.
This reduces the CPU load, but some CPU resources might stay unused.
Alternatively you can execute the console in which you want to spawn the yarn command with a lower priority.
On Linux (even on MacOS or Windows using WSL2 and an available shell command) this can be done using

nice -n 20 bash

This will spawn a new console inside your current console, but with the lowest processing priority possible,
i.e. this console and its tasks do not block other tasks (like video conferences, etc.) significantly.
Do not be confused that there will be no new window
and no major visual cues that you are now in another process.
In that console you can now execute the commands mentioned above.

Useful commands

Check if any node modules are outdated:

yarn outdated

Upgrade outdated node modules:

yarn upgrade

 Work on the source code

Work on the source code

First, prepare the development environment with the required packages.

yarn serve

The Live Development Server is now serving at http://localhost:54286.

Note

For more information on how to prepare the environment for the development,
please check the guide.

Setup

It is possible to install NEST Desktop from source code on a local machine using pip
(where it finds setup.py).
The recommended method is to install it in the user’s home directory using the
command argument --user.

python3 -m pip install --user -e .
nest-desktop start

Note

Do not forget to start NEST Simulator.

Commit changes

Go to the dev branch for the development.

git checkout dev

Fetch the data from GitHub (download it to your local directory):

git fetch

This command can be varied with options to e.g. fetch all branches (git fetch --all)
or to discard unreachable content (git fetch --prune),
even with multiple of them.
If required, intergrate the changes from GitHub into your local repository:

git pull

It is recommended to create a new branch for an an implementation of a new feature/goal.

git checkout -b newBranch

If your changes are ready to be commited, stage and commit them:

git add ...
git commit -m 'This is my commit.'

Push changes to GitHub

Finally, push all of them to repository on the internet (and create a merge request afterwards).

git push --set-upstream origin newBranch

A merge request will then be handled by the team:
It will be reviewed and if it provides some nice additions, it will be merged.

Note

It is likely that the review contains some change requests which have to be
addressed and committed by you before the merge can be made.

 Build and publish

Build and publish

Currently, we build NEST Desktop for multiple targets and publish them on various platforms.

Note

Please be aware that a lot of steps are already covered by our GitLab CI process.
Therefore, we recommend to inspect the .gitlab-ci.yml file together with this chapter.
It might also be helpful to have a look at the commands defined in package.json.

Python

[image: Python]

Building and pushing NEST Desktop on PyPI [https://pypi.org/project/nest-desktop/] is a required step for the
production.
After that, Docker Hub can upgrade NEST Desktop in the provided Docker image.

	Requirements
	
	setuptools, wheel, twine

The Python Package Index nest-desktop includes an executive command nest-desktop and a Python library
nest_desktop.

Build

The current working directory is nest-desktop.

The building phase contains two steps:
First, build a package of NEST Desktop using vue-cli-service.

Initially, you have to upgrade the version of nest-desktop in:

	packages.json

	nest_desktop/__init__.py

Then generate the app package using yarn. It builds the folder nest_desktop/app:

yarn build

The second step is to build a pip package for PyPI:

rm -rf build/ dist/ nest_desktop.egg-info/

Then generate the distribution packages of nest-desktop for PyPI:

python3 setup.py sdist bdist_wheel

Upload

Finally, the package is ready for the the publication.
You can upload the pip-package of nest-desktop to PyPI:

python3 -m twine upload dist/*

Do not forget to commit the changes you made and set a new version tag in git.

git tag -a v3.0 -m 'v3.0.0'
git push --tags

Conda

[image: Conda]
We have a conda-smithy repository for nest-desktop [https://github.com/nest-desktop/nest-desktop-conda].
When a new Python package is released, we can change the version in meta.yaml ([image: See] the meta content online [https://github.com/nest-desktop/nest-desktop-conda/blob/main/recipe/meta.yaml]):

{% set version = "3.x.y" %}

Note

It is also important to change the sha256 checksum of the source of tar.gz file.

Then make a pull request on the base branch of this repository.

Electron (.deb package)

In package.json, there are also yarn commands configured to build an Electron app.

yarn electron:build

Then install the .deb file on your Linux system.

See also

If you want to build other Electron packages, please have a look into electron-builder.yml file.

For Snap packages, you can find more information in the Snap repository for nest-desktop [https://github.com/nest-desktop/nest-desktop-snap].

 User documentation

User documentation

We use reStructuredText for Sphinx [https://www.sphinx-doc.org/en/master/]
to generate the documentation locally and online on Read the Docs [https://readthedocs.org/].
To learn more about the syntax, check out this quick reference [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html].
Please have a look at the coding conventions, too.

	Requirements
	
	Sphinx [https://www.sphinx-doc.org/en/master/]

	Material Design Theme for Sphinx [https://bashtage.github.io/sphinx-material/]

Use the working directory: nest-desktop/docs.
To install Sphinx and the Read the Docs theme via pip:

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop/main/docs/requirements.txt
python3 -m pip install -r requirements.txt

Development: Build HTML locally

Build the documentation which your created with Sphinx in the docs folder offline:

make clean; make html

Start the Python server to serve the documentation locally,
i.e. available only on your personal machine.

python3 -m http.server --directory ./_build/html 8000

Then open the URL http://localhost:8000 with your browser.

Publication: Push to ReadTheDocs

The documentation files for the dev branch are automatically rebuilt (and updated)
each time a push is made to the repository.
The docs for other versions refer to the GitHub tags or branches.
The latest tag is assigned to the latest release version.

Optional: Use Apptainer

Build an Apptainer image file:

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop-apptainer/master/recipes/development/doc-sphinx.def
apptainer build doc-sphinx.sif doc-sphinx.def

Start the Apptainer container:

apptainer shell doc-sphinx.sif

Now you are in an Apptainer virtualization in which you can execute the sphinx command.

 Continuous integration (CI)

Continuous integration (CI)

Mirror Action on GitHub

Since the NEST Desktop team has only restricted access to the CI resources of GitHub,
the source code of NEST Desktop is mirrored (.github/workflows/ebrains-push.yml)
to the EBRAINS GitLab [https://gitlab.ebrains.eu/nest/nest-desktop],
where we are able to use automated CI systems for the compilation and the deployment.
We use only a small GitHub CI setup to transfer the code to the EBRAINS GitLab
and execute the compute-intensive workloads there.

Jobs on GitLab

You can find the configuration in .gitlab-ci.yml.
It consists of two stages, build and deploy.

In each stage, we prepared two parallel pipelines in which jobs will be executed
when a specific branch is pushed:

	the development pipeline for the dev branch to check the functional operation of the CI
(in the future with testing) and

	the production pipeline for the main branch when NEST Desktop is released.

In the build stage, the CI pipeline uses Node.js to produce NEST Desktop
and to store it in the nest_desktop/app folder.

In the deploy stage, the CI deploys NEST Desktop as a Python package
and as Docker images for EBRAINS Harbor [https://docker-registry.ebrains.eu]
(the Docker container registry of EBRAINS)
and Docker Hub [https://hub.docker.com].
All jobs in the deploy stage depend on the job of the build stage being executed successfully.

Each executable job of the development and production pipelines has a base job,
so that the job scripts in both cases seem to be identical,
but they only differ in the version variable for the Python package and the Docker image.

Note

You can check these scripts also for commands if you want
to execute single build steps manually on your machine.

 Index

Index

 <no title>

 Abstract

Abstract

An educational application for neuroscience

Simulation software for spiking neuronal network models matured in the past decades
regarding performance and flexibility.
Nevertheless, the entry barrier remains high for students and early career scientists
in computational neuroscience since these simulators typically require programming skills
and a complex installation.
Here, we describe an installation-free graphical user interface (GUI) running
in the web browser, which is distinct from the simulation engine running anywhere,
on the student’s laptop or on a supercomputer.

This architecture provides robustness against technological changes in the software stack
and simplifies the deployment process for students/autodidacts and for teachers.
Our new open source tool, NEST Desktop 1, comprises graphical elements for creating
and configuring network models, running simulations, as well as for visualizing and analyzing the results.
NEST Desktop allows students to explore important concepts in computational neuroscience
without the need to learn a simulator control language before.

Our experiences so far highlight that NEST Desktop helps advancing both quality
and intensity of teaching in computational neuroscience in regular university courses.
We view the availability of the tool on public resources like the European ICT infrastructure
for neuroscience EBRAINS as a contribution to equal opportunities 2.

A paper for NEST Desktop is available on eNeuro [https://www.eneuro.org/content/8/6/ENEURO.0274-21.2021].

References

	1

	https://github.com/nest-desktop/nest-desktop

	2

	https://ebrains.eu/service/nest-desktop

 Citation

Citation

In order to cite NEST Desktop in general, please use the DOI 10.5281/zenodo.5037050 [https://doi.org/10.5281/zenodo.5037050] for all versions (always redirecting to the latest version).
If you like to refer to a single version, you can find these also on Zenodo,
e.g. 10.5281/zenodo.5037051 [https://doi.org/10.5281/zenodo.5037051] for Version 3.0.
You can use the reference to the paper for NEST Desktop
(DOI: 10.1523/ENEURO.0274-21.2021 [https://doi.org/10.1523/ENEURO.0274-21.2021]) mentioned above as well,
if that is more appropriate in the context of your reference.

You will also find the exports for the citation managers on Zenodo and eNeuro.

 Funding

Funding

This project has received funding from the European Union’s Horizon 2020 Framework
Programme for Research and Innovation under Specific Grant Agreement No. 785907
(Human Brain Project SGA2) and No. 945539 (Human Brain Project SGA3).
This project was funded by the Helmholtz Association Initiative and Networking Fund
under project number SO-092 (Advanced Computing Architectures, ACA).
This work was supported by the DFG Excellence Cluster BrainLinks-BrainTools (grant EXC 1086).

 Live demo

Live demo

Below, you can find a live demo of NEST Desktop itself (might not work in private mode).
However, you are only able to construct and edit networks, as it does not contain a NEST Server/NEST Simulator instance.
Without the backend, you cannot perform the simulation.
If you want to use the backend as well, please have a look at the EBRAINS platform [https://nest-desktop.apps.hbp.eu/#/],
where you can use the simulator, too (after a quick and free registration).
If you want to use the backend as well, please have a look at the EBRAINS platform [https://nest-desktop.apps.hbp.eu/#/],
where you can use the simulator, too (after a quick and free registration).

 Direct current injection into single neurons

Direct current injection into single neurons

Intracellular recordings give access to the membrane potential of single neurons.
If cells are studied in vitro in an acute slice preparation, the synaptic input,
which a neuron normally receives under in vivo conditions, is then missing.
It must be replaced by artificial input applied to the neuron through the electrode.
One can use direct current (DC) of various amplitudes
to systematically explore the response properties of a neuron.
This represents, in fact, a simple and efficient method
to characterize biological neurons in electrophysiological experiments.
We will here apply it to model neurons as well.

You will use a simple linear integrate-and-fire (LIF) point neuron model
to devise a single-neuron current injection experiment.
In the LIF neuron model, spikes are generated each time the membrane potential reaches a predefined threshold.
Spike waveforms are not modeled explicitly,
and you recognize a spike only by the reset (strong downward deflection) of the membrane potential
that follows a threshold crossing.

	What is the membrane potential response for both negative and positive values of the applied current?
You can measure the membrane potential by performing an intracellular recording, using a voltmeter.

Try different amplitudes of the applied current and describe the phenomena you observe.

	Explore how the membrane potential response depends on the biophysical neuron parameters.
In particular, describe the influence of the time constant of the membrane, the spike threshold
and the absolute refractory time on the membrane potential trajectories.

Video tutorial

 Noise current injection into single neurons

Noise current injection into single neurons

To account for additional effects seen in recordings from real nerve cells,
we add some noise current to the input mimicking spontaneous channel openings, or synaptic bombardment
originating from a large pool of presynaptic neurons.
If the fluctuations of a physical variable are due to the combined influence of a large number of small contributions,
the concept of White Noise can provide an adequate descriptive model.
In this idealized type of signal, all frequencies are present in equal proportions, but with random phases (wind).
A well-known example is white light, which comprises all colors from the visible spectrum.
In our simulations, we use a sequence of independent identically distributed Gaussian random variables
to approximate a particular type of white noise, Gaussian White Noise (GWN).

	First look at the effect of noise in the subthreshold case.
While you explore the membrane potential response for (weak) noise current input, note
that GWN, like any Gaussian random variable, has two parameters: mean and variance.

Perform systematic simulations with different combinations of mean and variance (or standard deviation)
and find a way to document the results.

	Now, consider a spiking neuron with “strong” noise current as input.
If the strength of the input (mean), or the amplitude fluctuations of the input (variance),
are large enough, the firing threshold is crossed and action potentials are generated.
In contrast to the case of DC input, the fluctuations of the membrane potential will now affect the timing
of the action potentials to some extent.

Document this phenomenon with a suitable set of experiments,
where you run the simulations with different seeds of the random number generator.

	Play with the parameters of the noise current over a certain range of values when there is

	no action potential generated, and

	several spikes generated.

What exactly is the “threshold” now?
To judge the effect of random fluctuations,
it is important to look at multiple repetitions of the same experiment.

What happens to the frequency of spikes and the irregularity of spike trains
as mean and/or variance of the noise is increased?
The irregularity of neuronal spiking can be assessed, for example,
by the coefficient of variation (CV) of the interspike intervals.

	Now you should systematically measure two types of input-output curves of the neuron:

	Keep the variance of the noise at a fixed level and systematically change the mean of the noise.
What is the difference to the curve you obtained with pure DC input?

	Now keep the mean of the noise at a fixed level and systematically change the variance of the noise.
What is the minimal variance (“threshold”) that leads to a non-zero response rate?

 Poisson input into single neurons

Poisson input into single neurons

In models, we often assume that presynaptic action potentials are arriving randomly at a certain rate.
Synapses on the dendrite of the postsynaptic neuron are then activated in a random fashion.
The stochastic process that reflects such random arrival of point-like events is called a Poisson process.
Its only parameter is the rate at which events occur.
In view of the linearity of temporal and spatial dendritic integration, all synapses
that have the same amplitude and sign can be treated as a single compound source of input.
You can now employ the Poisson generator functionality of NEST to explore the response behavior of neurons:

	Devise a method to display simulated Poisson spike trains,
which will later be used as a source of input to our model neuron.
Verify the randomness of the Poisson generator by repeating the same simulation multiple times.

A raster display with lines corresponding to “trials” rather
than “neurons” represents an adequate tool to illustrate this.

	Consider an LIF neuron that receives Poisson input of a constant rate using a synapse of a specific amplitude.
Analyze how the input rate influences the membrane potential and the spiking response of the neuron.
The parameters of interest are the mean and the variance of the membrane potential,
as well as the output firing rate and the irregularity of the output spike train.

What happens if you change the strength of the synapse?

	Now we consider the more realistic situation that a neuron receives input from two different
and independent presynaptic populations, one consisting of excitatory,
the other one consisting of inhibitory neurons.

Note

The presynaptic population of a cortical nerve cell can be quite large, comprising up to 10,000 neurons, say.

What matters for the postsynaptic neuron is the accumulated spike rate for each type of input,
so these input rates will also be large.
The model has two parameters, the rate \(\lambda_{E}\) of the excitatory Poisson process
and the rate \(\lambda_{I}\) of the inhibitory Poisson process.

Begin your simulation experiments by fixing \(\lambda_{E} = \lambda_{I}\)
assuming exactly the same firing rate for excitatory and inhibitory inputs.
Start with small rates (subthreshold) and jointly increase them step by step
until output spikes are generated (superthreshold).

Describe your observations for weak and for strong input,
both on the level of the membrane potential and on the level of output spike trains.

	Considering synaptic bombardment from a large pool of presynaptic neurons,
the mathematical model of shotnoise is appropriate to describe membrane potential fluctuations.
Generally, the two relevant parameters \(\lambda_{E}\) and \(\lambda_{I}\) are fixed independently,
and combinations with \(\lambda_{E} \neq \lambda_{I}\) may arise.

Previously, we have considered Gaussian White Noise input,
which was described by the two parameters mean \(\mu\) and variance \(\sigma^{2}\) .
No specific assumptions were then made about the biophysical origin of membrane potential fluctuations.

Shotnoise can also be described in terms of the mean \(\mu\)
and variance \(\sigma^{2}\) of the membrane potential.
As long as the input remains subthreshold and no output spikes are generated,
it holds that \(\mu \sim \lambda_{E} - \lambda_{I}\) and \(\sigma^{2} \sim \lambda_{E} + \lambda_{I}\).
(The symbol \(\sim\) means “is proportional to”.)

Perform some experiments that illustrate this relation.

	If input rates are large enough, output spikes are generated.
There is a loose correspondence between the mean membrane potential and the mean output rate,
as well as between the membrane potential fluctuations (variance)
and the variability of output spike trains (irregularity).

One speaks of the “mean-driven regime” and the “fluctuation-driven regime”,
depending on whether spikes are predominantly generated by a depolarizing drive (mean),
or by membrane potential fluctuations (variance), respectively.

Explore the meaning of these two terms, and illustrate the two regimes by suitable simulations.
Develop criteria that allow you to classify neuronal activity recorded in experiments accordingly.

NEST Desktop does not only offer direct current (DC) stimulators, but also noise current stimulators.
In principle, they are used in the same way as a DC stimulator.
“Poisson input” is just one specific form of “noise input”.
Technically, this is correct, and this immediately explains how to use it in a simulation:
Just replace the direct current stimulator by a Poisson stimulator.

Biologically, however, we are now talking about an input that works with spikes
that activate synapses, and it does not just inject electrical charge into the cell.
Therefore, changing the properties of synapses on the target neuron also changes the properties of the “noise” input.
This may be confusing, but the concept of “shotnoise” exactly reflects this.
You should also keep in mind that the spikes generated by a Poisson source
typically originate from a large set of presynaptic neurons.
In the neocortex, this set could comprise hundreds or thousands of presynaptic neurons,
and the rate parameter can assume very large values
(rate of individual neurons \(×\) number of presynaptic neurons).

Noise and fluctuations in our simulations are based on so-called “pseudo-random” numbers.
They look like “true” random numbers for all practical purposes,
but they are generated by a perfectly deterministic algorithm, one after the other.
Using the same starting point (seed), you get exactly the same stream of random
numbers.
However, if you want a different stream of random numbers each time you perform the simulation,
select Randomize seed in the “Simulation” controller.

 Excitatory and inhibitory synaptic input into single neurons

Excitatory and inhibitory synaptic input into single neurons

In a biological neuronal network, communication between neurons typically relies on synaptic input.
Whenever the presynaptic neuron generates a spike,
a chemical neurotransmitter (e.g. glutamate or GABA) is released and bound to postsynaptic receptors.
This leads to a transient activation of the synapse, and a transient inward or outward postsynaptic current (PSC).
As a consequence, the membrane potential of the postsynaptic neuron experiences a small deflection,
the postsynaptic potential (PSP).
Typically, for an excitatory synapse using glutamate as a transmitter,
this deflection is depolarizing (towards threshold).
In contrast, for an inhibitory synapse using GABA as a transmitter,
it is hyperpolarizing (away from threshold).
The superposition of many PSCs of either polarity represents the effective input to a neuron,
which may, or may not, lead to an output spike to be sent to other neurons in the same circuit.
You should now explore all these aspects by performing the following numerical experiments:

	Devise a simulation method to study single postsynaptic potentials.
Which simulation parameter reflects the “strength” of a synapse?
Systematically explore the effect of activating single excitatory and inhibitory synapses.

Under which conditions can activating a single synapse elicit an output spike?

	Multiple PSPs elicited in rapid succession at one
and the same synapse add up to a compound signal if they sufficiently overlap in time.
This phenomenon is called “temporal integration”.

Multiple PSPs elicited at different synapses are also superimposed,
all contributing to the membrane potential of the postsynaptic neuron.
This is called “spatial integration”.

Design a set of experiments to illustrate the phenomena of temporal
and spatial synaptic integration in the subthreshold regime.
Which parameters of the neuron are mainly responsible for the temporal overlap between individual PSPs?

	A hallmark of the LIF model, which is shared by many biological neurons,
is the linearity of temporal and spatial integration.
The membrane potential response to a combined input is just the sum of the individual responses
to the individual inputs, as long as all of them remain subthreshold.

Design an experiment that demonstrates the linearity of synaptic integration for the LIF neuron model.
Does linearity also hold for superthreshold inputs that lead to action potential firing?

NEST Desktop allows you to study how neurons are activated by synaptic input.
You can use the so-called spike_generator for experiments with maximal control.
In essence, you specify the time point of each spike explicitly.
Don’t forget to specify the amplitude of the post-synaptic potential.
This way, you can explore the effect of “spatio-temporal integration”.
You can also study, under which conditions synaptic input can trigger an output spike.

Video tutorial

 Network models of decision making

Network models of decision making

Deciding between two alternatives is a very basic, but also a very essential task the brain has to perform.
However, not much is known about how this process is actually implemented in biological brain networks.
The stable fixed point dynamics considered in the previous section does not seem to suggest anything
that looks like a decision making system.
The conceptual model that has been suggested for decision making, however, is surprisingly simple:
Dividing the excitatory neuron population into two halves,
and arranging the strength of synapses within each population to be a little stronger than the synapses across populations,
the two excitatory populations start to compete with each other.
Depending on the external input each of them gets,
one of the two population “wins” by suppressing the other one with the help of the inhibitory population.
If this happens, the symmetry is broken and a “decision” has been made.
This kind of “winner takes all” dynamics in EEI networks is considered as a candidate mechanism for decision making,
e.g. for classification tasks in sensory systems of the neocortex (“cat/dog”, “left/right”, “good/bad”).
A very similar mechanism, based however on splitting the inhibitory population,
has been postulated for subcortical brain areas.
In the basal ganglia, for example, decisions are made
whether a planned action, for example a movement, is executed or terminated (“go/nogo”).

To explore decision making with computer simulations,
we recommend that you start with the network models that were prepared for the course.
In the navigation sidebar on the left, click with the right mouse button on the projects icon (contains a brain symbol).
Then choose the option “Import projects” (icon: arrow pointing upwards) from the dropdown menu (three vertical dots)
and import the file provided in the repository (tba).
This is, by the way, a general method with which you can share models with others, including all settings and parameters.

Decision making in EEI Networks

The provided network model comprises three (instead of just two) subpopulations:
two of them are excitatory (a, b), and one is inhibitory (c).
This was achieved by dividing the excitatory population of the model
considered in the previous chapter into two equal halves.
In a fully symmetric setting, the two excitatory populations (a, b) of course do not behave any different.
However, if the symmetry is broken, one of the populations may take over and dominate the other one.
There are different possibilities how this can be achieved.

	Figure out which manipulations of the network configuration lead
to an unequal activation of the two excitatory populations,
for example a stronger activation of population (b).
You may test the number of neurons, the connectivity (synaptic weights or transmission delays)
within or across populations, or external input.
It is suggested that you change only one parameter at a time, and reset all the other
parameters to their default values.
To account for statistical fluctuations, you should perform repeated simulations for each parameter setting,
using different seeds of the random number generator.

	What is the exact role of the inhibitory population in the competition process?
How does the activation of inhibitory neurons reflect a decision?

Decision making in EII networks

A decision making network can also be established by dividing the inhibitory population into two halves.
In this scenario, the two inhibitory subpopulations (b, c) are acting as competitors.
Very much like in the EEI scenario considered in the previous section,
the goal is to understand which factors contribute a bias in the activation of one population (b, light blue).

	Consider now an alternative decision making system, which is based on a EII scenario.
You should devise a strategy to study its behavior similar to the one you developed for the EEI model.

Note

Inhibitory synapses have opposite effects as compared to excitatory ones.

	What is the exact role of the excitatory population in this process?
How does the activation of excitatory neurons reflect a decision?

Decision making

Perceptual decisions have to be made when there are two conflicting interpretations of the input
(e.g. leftward vs. rightward movement of a subtle stimulus).
The brain will then not maintain both interpretations, but rather decides for one of them
and adjusts its behavior accordingly.
Typically, the “stronger” input wins, but additional factors
(e.g. memory previous encounters, or random perturbations) might contribute as well.
The same holds for action selection, which is a necessary component
to resolve conflicts in the behavioral goals of an animal.

	Interpret the phenomena observed in simulations of EEI and EII networks
in relation to a hypothetical “decision making” process.
What are the requirements to enable “decision making”?
Which additional components would you need for a full-blown decision making system?

 The Hodgkin-Huxley theory of the action potential

The Hodgkin-Huxley theory of the action potential

Current clamp simulation of the free-running membrane

The leaky integrate-and-fire neuron model features a very simple mechanism of action potential generation:
a fixed threshold on the membrane potential.
The upstroke of the spike is not part of the model at all, whereas the voltage reset and the absolute refractory time following each spike are imposed on the membrane potential trajectories.
To address the biophysical underpinnings of action potential generation and spike aftereffects, however, a different model must be considered.
It turns out that specific membrane components, so-called voltage-dependent ion channels, are responsible for spike generation.
The Hodgkin-Huxley model of the squid giant axon (published in 1952) accounts for these additional components.
It explains why action potentials dynamically arise, and which membrane parameters and other circumstantial factors matter during this process.
You will now perform simulation experiments on Hodgkin-Huxley (HH) neurons and this way characterize this model:

	Verify that the subthreshold properties of the HH neuron model are similar to the properties of the LIF neuron model.
To address this issue, inject a depolarizing or hyperpolarizing current into a LIF neuron and into a HH neuron and perform intracellular recordings to document the membrane response in both cases.
Make sure the current is weak enough to not elicit a spike.

	For strong-enough DC input current the HH model neuron will fire a train of action potentials.
Inspect the spike waveform carefully and relate it to the spikes generated in a LIF neuron.
The following keywords might guide your discussion:
threshold, upstroke, downstroke, spike width, voltage reset, after-hyperpolarization, absolute refractory time, relative refractory time.
Is the spike waveform of the HH neuron really the same for different input scenarios (e.g. weak vs. strong current)?

	Use a spike recorder to characterize the spiking response to superthreshold current input.
The goal is again to characterize the neuron by a curve that depicts the firing rate response as a function of the applied current.

NEST Desktop offers different neuron models.
Here you should select hh_psc_alpha and compare its behavior to the simpler iaf_psc_alpha model
that we have studied previously.
As these two models have an entirely different spike generation mechanism,
any intracellular recording of the membrane potential will look very different in both models.
In the LIF model, spikes are just threshold crossings.
In the HH model, in contrast, their waveform is explicitly simulated.

Sodium and potassium currents under current clamp conditions

It is the joint action of both voltage-dependent sodium (\(Na^{+}\)) channels
and voltage-dependent potassium (\(K^{+}\)) channels
which underlies action potential generation in excitable membranes.

In particular, sodium channel activation (i.e. opening) due to some initial depolarization
leads to an influx of sodium ions,
which depolarizes the membrane even further and opens even more sodium channels.
This self-amplifying avalanche of sodium channel activation drives the action potential to a point of no return,
from where it continues until the sodium reversal potential is reached.
Sodium channel inactivation and potassium channel activation finally terminate the avalanche
and repolarize the membrane.
The ongoing outflux of potassium ions through (non-inactivating)
potassium channels eventually hyperpolarizes the membrane towards the reversal potential of potassium.

	Action potential generation based on voltage-dependent ion channels takes place in several stages,
as described above verbally.
Use the membrane potential recording of a single spike to illustrate the dissection of this process.
Which of the contributing factors determines the temporal width of the spike?
Can one record the underlying ion-specific membrane currents in biological neurons?

	It is difficult to disentangle the effect of sodium channel inactivation and potassium channel activation.
The former helps terminating the upstroke, the latter causes a downstroke of the membrane potential during a spike.
In a simulation, you can record the concentration of h, m and n particles
of the Hodgkin-Huxley model for a more precise view on these two processes.
Is such a recording also possible in a biological neuron?

	Explore the effect of the specific neurotoxins TTX and TEA on neuronal spiking.
You can easily achieve this in your simulations
by setting the peak conductances of either sodium channels or potassium channels, respectively, to zero.
What happens if you only partially knock-out these channels
by setting them to a non-zero, but reduced value?
Formulate and explain your expectations before you perform the experiments.

NEST Desktop allows you to record the activation of h, m and n particles directly,
using a multimeter.
In a biological neuron, this would never be possible.
To assess their dynamics, multiple separate experiments have to be performed.

Exploring the “spike threshold” and the “depolarization block”

Action potential generation follows an “all-or-nothing” principle.
Whenever favorable conditions are met, a stereotyped waveform is kick-started and cannot be stopped any more.
But what exactly are those “favorable” conditions?
You should perform some numerical simulations to address this question:

	Identify the “spike threshold” of a HH neuron based on the input-output function you generated above.
Zoom into the threshold regime by performing more simulations just below and just above threshold.
Does the HH neuron exhibit “type I” behavior or “type II” behavior?

	Use now brief current steps to induce single spikes only.
The two parameters of interest are the width of the current pulse, and its amplitude.
In a nutshell, brief steps need to have a high amplitude,
longer steps can be somewhat weaker to successfully generate a spike.
Explore the threshold behavior with regard to both parameters, along the lines explained in the lecture.

	You can use a continuous current ramp, as opposed to a sharp current step, to stimulate the neuron.
If the rise in amplitude is shallow enough,
it is possible to depolarize the membrane beyond any threshold voltage.
No spike is generated then, and this phenomenon is called the “depolarization block”.
Try out different slopes of the ramp.
Can you explain it in terms of sodium channel inactivation?
Perform a simultaneous recording of h, m and n particles to back up your explanation.

 Network dynamics

Network dynamics

In the central nervous system, neurons never act in isolation.
Rather, they are bound to communicate with other neurons using both electrical and chemical signals.
Fast electric signaling mostly relies on specific and precise synaptic transmission based on neurotransmitters.
Depending on the transmitter system the presynaptic neuron is using, synapses come in different flavors:
Synaptic communication is either excitatory or inhibitory.
Although polarity is the most salient property, other parameters of synaptic transmission are also important,
depending on the type of information that is being processed.
We mention here the strength of the synapse, the transmission delay, the rise time of the postsynaptic potential,
and different aspects of synaptic plasticity.
Synapses are highly important building blocks of networks, determining the properties
and the function of brains in essential ways.

A typical task of behavioral control rarely involves just one step of signal transduction.
In most cases, several processing stages are needed.
To achieve a complex task (e.g. produce spoken language)
many neurons at different places in the brain eventually make their contribution.
There is little agreement among researchers, however,
how the communication is organized on the system level.
In fact, different parts of the brain seem to employ very different strategies of collective signal processing.
This is at least what the microanatomy of synaptic connectivity in brain circuits suggests.
Whereas the cerebellum has a clear feed-forward architecture,
neuronal communication in the large recurrent networks of the neocortex is dominated by feedback.
It is really a daunting task to characterize these networks of different types of neurons in the brain
to help improving our understanding of their role for the control of behavior.
Numerical simulations of prototypic circuits help us exploring and refining theoretical ideas,
and aligning them with biological design principles.

Recurrent networks of excitatory neurons

The most numerous cell type in the neocortex are pyramidal neurons (approximately 80%).
They generally use glutamate as a transmitter and are, therefore, excitatory.
Local circuits are highly recurrent, and there is intense synaptic communication among neurons.
External inputs make an important contribution as well.
In fact, each neuron receives a large number of inputs from other neurons, and contributes a large number of
outputs to other neurons in the same network. Individual synapses are rather weak, though.
Only the joint action of many excitatory inputs can bring the postsynaptic neuron to fire a spike.
The synaptic connectivity of the network, to the degree to which it is known at all,
is statistically consistent with the topology of a random graph.
A typical value for the connection probability in local cortical networks is 10%.

	Set up a large-enough population of excitatory neurons, based on the standard LIF model.
Establish random synaptic connections among neurons.

Note

There are several different options to wire up a network randomly
([image: See] https://www.nest-simulator.org/connection-management).

Find a meaningful way to monitor neuronal activity in the network, both on the level of individual neurons (membrane potentials and spike trains), and on the level of the whole population (PSTH, as a proxy for the EEG).
Characterize the type of activity that you observe.

	Explore now the role of external input for the dynamics of the recurrent network.
As this external input is normally provided by other neurons that are not part of the local network in question, a Poisson generator represents an adequate model for it.
Try out different options how to connect it to the recurrent network, and play with the intensity of the input.
Networks in the neocortex are sparse (10% connectivity).
How does the input influence the response of such a sparse network?

	If the Poisson input is neither too weak nor too strong, the activity in the recurrent network looks random itself,
both on the level of spike trains and on the level of membrane potentials.
What are the reasons for this?
You can test the influence of the random Poisson input by replacing it by a deterministic DC source.
Make sure that the amplitude of the injected DC is roughly equivalent to the Poisson input applied previously.
As a criterion, you can either compare mean membrane potentials in an intracellular recording of one of the neurons in the network,
or you can base your calibration on the response rate of one or several neurons in the network.

NEST Desktop offers several different methods to wire up a network randomly.
Make sure you understand how they work, and which of them allows you to generate sparse networks.
Your networks should be not too small and not too large.
Networks with 100 neurons may be a good start. Working with a larger number of neurons is possible,
but the initial wiring and the simulation of activity can take quite long then.
Also make sure that each neuron receives enough external input,
as the input from other neurons in the network will not suffice to push the membrane potential above threshold
and elicit any activity.

Recurrent networks of inhibitory neurons

There are networks in the brain that consist of only inhibitory neurons.
In particular, several nuclei in the basal ganglia (e.g. the striatum, and both parts of the globus pallidus)
are comprised of GABAergic neurons.
It is clear that such networks depend on excitatory drive from outside to become active.

	Use a similar setup as for the all-excitatory networks studied before,
except that all neurons should now be inhibitory.
Again explore how the properties of the input determine the properties of the network response.
Using the same random connectivity and external inputs that lead to the same mean firing rates, what is the main difference between all-inhibitory and all-excitatory networks?

	Additional parameters that are relevant in a network, like the synaptic transmission delay,
have a rather strong influence on the activity dynamics in recurrent networks.
Systematically vary this particular parameter and describe the consequences you observe.
Make sure you vary it only in small steps, as the network might react quite sensitively.

NEST Desktop generally allows to set up big networks with weak recurrent synapses,
or smaller networks with strong recurrent synapses.
To see the impact of the transmission delay of recurrent synapses on the network activity,
the recurrent contribution to the network activity needs to be high enough.
Neurons communicate with other neurons in the central nervous system using both electrical
and chemical signals depending on the transmitter system.

Recurrent networks of excitatory and inhibitory neurons

We will now get back to the neocortex and add the missing 20% of inhibitory neurons to the recurrent network.
Each of the two subpopulations is now conceived as a random recurrent network in its own respect,
and the two subnetworks are mutually coupled with each other in a random fashion.
This means that we now have to track four connectivity parameters,
for the following types of synapses: \(E \rightarrow E\), \(E \rightarrow I\), \(I \rightarrow I\), \(I \rightarrow E\).
Although it is interesting and relevant to vary them independently,
it is recommended to use the same connection probability of 10% throughout all types of synapses,
and to use exactly the same strength \(J > 0\) for all excitatory synapses
(\(E \rightarrow E\), \(E \rightarrow I\)) and same strength \(– g J < 0\) for all inhibitory synapses
(\(I \rightarrow I\), \(I \rightarrow E\)).
The number \(g > 0\) is a unit-less factor describing how dominant inhibition is in the network.
The value \(g = 4\) is special,
because in this setting the relatively small number of inhibitory neurons is exactly
compensated by an increased strength of inhibitory synapses.

	Set up a random recurrent network according to the prescription given above.
Fix a value of \(g = 5\) while you search for good values of the other parameters.
First of all, the strength \(J\) of excitatory synapses must be matched to the typical input a neuron gets.
What is your criterion?
As for the other networks considered before,
external excitatory drive will be necessary to induce meaningful activity in this network.
Fix a good value for the rate of the external drive, just above threshold.
The goal should be to establish stable activity in the network,
which is characterized by low firing rates, irregular (Poisson-like) spike trains,
and a low degree of synchrony across neurons.
Describe your experiences during the parameter search,
and formulate your recommendations how to make this a reproducible and joyful procedure.

	Whatever configuration you are now working with, the activity should be stable against external perturbations.
In fact, such dynamic stability would be a highly desirable property of any biological system.
For example, you can use an additional DC input
and apply a strong depolarizing perturbation to all neurons,
mimicking the effect of a flash of transcranial magnetic stimulation, TMS.
After the perturbation is turned off, the network should return to its previous activity.
Is this “return to the fixed point” a fast or a slow process?
Can you estimate a time constant for it?

	Stable “fixed point activity” is characterized by a tight temporal balance between excitation and inhibition.
This balance can be demonstrated by comparing the time-resolved PSTH fluctuations
of the excitatory population to the inhibitory population.
A “scatter plot” may come handy to display the observations made “by eye” in a more objective way:
Simultaneous bin counts of excitatory activity \(x\)
and inhibitory activity \(y\) make the coordinates \((x,y)\) of data points in a two-dimensional display.
What is the relation of individual spike trains with the population activity measured by the PSTH?

	You should now vary the parameter \(g\) and document all important changes.
Changing this parameter has the potential to alter the balance between excitation and inhibition.
Describe how the balance is affected, and what the consequences of this for the recurrent network dynamics are.

Video tutorial

 Point neuron models with conductance-based synapses

Point neuron models with conductance-based synapses

The term “point neuron” refers to a nerve cell, in which spatial variations of the membrane voltage are
negligible.
Such cells are then fully described by a single membrane potential variable.
Most small neurons share the property of being “electrotonically compact” in this sense.
Spatially extended cells, in contrast, must be conceived as a physical cable.
In such a cable, the voltage is attenuated with distance due to leakage of electric charges.
Moreover, the cable itself acts as a spatio-temporal filter and alters the signal transmitted by it.
Such a cable is often approximated by a chain of electrically coupled single compartments,
leading to so-called multi-compartment neuron models.

In contrast to what we assumed for the leaky integrate-and-fire neuron model, biological synapses operate on
the basis of ion channels, and should not be considered as fixed current sources.
When a neurotransmitter is released at the presynaptic axon terminal,
it diffuses through the synaptic cleft and binds to the receptors sitting in the membrane of the postsynaptic neuron.
As a result, ion channels linked to the receptors open transiently and enable a brief postsynaptic current flow.
The duration of this transient inflow or outflow is described by the so-called synaptic time constant.
Depending on the concentration gradient of the ions involved
(\(Na^{+}\) for excitatory synapses, \(Cl^{-}\) for inhibitory synapses),
this current is either depolarizing or hyperpolarizing, respectively.

If many of these synaptic channels are simultaneously open due to massive synaptic bombardment from a
pool of presynaptic neurons, this may change the integration properties of the neuron as a whole.
Its total input resistance \(R\) is decreased,
and therefore the membrane time constant \(\tau = R \cdot C\) is decreased as well,
affecting the width of individual postsynaptic potentials (PSPs),
which may also have a reduced amplitude due to the strong membrane leak.
In addition, postsynaptic potentials have a shorter duration, as the membrane time constant is smaller.
This scenario has been described as the “high-conductance state”.
Neurons then assume nonlinear properties, as their input integration becomes state-dependent:
PSPs at rest are different to PSPs sitting on a background of many activated synapses.

	Consider an isolated, conductance-based point neuron,
with synapses that have alpha-functions as post-synaptic current transients,
and a non-zero synaptic time constant.
Simulate an individual excitatory postsynaptic potential,
and explore its dependency on the driving force (distance to the excitatory reversal potential).

This can be achieved by injecting additional subthreshold depolarizing currents of different strengths.
Perform the same experiment for an inhibitory postsynaptic potential
and discuss the differences to the case of excitation.

	Now replace the DC input by an equivalent synaptic input, called synaptic background activity.
It can be conveniently provided by a Poisson source,
which is coupled to the neuron by an excitatory synapse.
By systematic experimentation, you can now determine
which firing rate of the Poisson source leads to the same mean depolarization
of the postsynaptic neuron as a given DC injection.

On top of the background activity, simulate again an individual excitatory postsynaptic potential.
Describe how it changes its shape (amplitude and width) in the high-conductance state.

	You can emphasize the high-conductance state even more,
if you apply a combined excitatory and inhibitory Poisson input.
In order to arrive at the same mean depolarization,
the inhibitory input must be overcome by some extra excitatory input.
The excessive excitatory and inhibitory synaptic bombardment,
however, will reduce the effective input resistance and time constant even more.

	Consider now synapses with different synaptic time constants.
The reduction of synaptic strength in the high-conductance state is more prominent for slow synapses
(large synaptic time constant) than it is for fast synapses (small synaptic time constant).

Perform an experiment that demonstrates this surprising effect.
You might just repeat the experiment from the second assignment with a different synapse
that has a smaller or larger synaptic time constant.
Then you compare the attenuation of synaptic transmission due to background activity in both cases.

NEST Desktop enables strategies of analysis that cannot easily be adopted in a biological experiment.
In order to display weak effects under noisy conditions,
researchers have to perform many repetitions in several recording sessions
and compute the average outcome afterwards.
This is very time consuming.
In a simulation, in contrast, you might consider performing simultaneous recordings from several neurons
at the same time and directly compute the average.
This is easily achieved in a simulation by setting the population size to a large enough value.

 Reference

Reference

Structural Overview

General layout concept of the interface

NEST Desktop consists of three segments with different purposes.

[image: NEST Desktop]

The layout of NEST Desktop with the three main areas (1) - (3).

The left column (1) shows the navigation to route pages.
The center area (2) renders the main content of the page,
whereas the right column (3) displays the controller for content modification.

Navigation sidebar

The navigation sidebar is the main navigation element and available in (nearly) every view.
It contains the following icon buttons, which lead to the pages described below.

For a lot of these buttons, there are further options available via right click.

	Project
	create and edit networks as well as run simulations

	Model
	manage and edit your models

	Settings
	settings of NEST Desktop (backend, user interface, etc.)

	Help
	reference to the documentation on ReadTheDocs

	About
	info about NEST Desktop

For the sections Project and Model, the navigation sidebar will be extended with a second sidebar,
containing a list of available projects and models, respectively.

Main content

This area displays the main page content.
In the project and model section, it contains a header bar with the possibility to select different sub-views
and - in the project section - also the edit history as well as the button to start a simulation.
Performing a right click on the simulation button opens a dropdown menu, which offers some basic simulation options.
On the right side, it contains a sidebar (described below) to control and edit the content, e.g. parameter values, etc.

Controller sidebar

This sidebar allows to edit the content.
A lot of its functions can also be found in the context menu of the main section.
Please be aware that node names will offer a dropdown menu on left click,
while the connection arrows offer such a menu on right click.
Please be aware that some content requires a successful simulation execution to exist.

About view

This view shows the program info about NEST Desktop.
In the center, you can see a short explanation as well as the technical details.

At the bottom, you will find further references for background information.

In a slightly varied form this view is used as the landing page (containing buttons to start a new project or load one) when yor start NEST Desktop.

Project section

The project section manages all project-related tasks.

Sidebar

A click on the project switches to the project area.
If you are already in that area, this button toggles the list of projects, a second sidebar.
In that list, you can manage your projects, e.g create, rename, arrange or delete them.

See also

	:doc:’/user/usage-advance/project-view’

Main content of the page

In the project area, the main content consists of an area,
where you can switch between the network graph of the project,
the results of the simulation and the print view of the simulation results.
The slider in the top bar gives the possibility to switch between these views.
For the simulation results, there is also the possibility to switch between
2D and 3D representation, if the results have spatial properties.

The top bar contains the button to start the simulation.
A right click offers further options.

Model view

Left sidebar

In this view you can manage your models.
The left sidebar shows a list of the available models.
You can search the models list in the search bar on top of the list.
Below the search bar, you have the possibility to select the following filter options regarding node type and model source:

	Installed
	selects only models which are installed locally

	GitHub
	selects only models which are available on GitHub

	Neuron
	selects all neuron models

	Stimulator
	selects all stimulator models

	Recorder
	selects all recorder models

	Synapse
	selects all synapse models

Please be aware that the model source filters work like a logical AND, while the node type filters work like a logical OR.
The node and source filters are combined with a logical AND (e.g. “(Installed AND GitHub) AND (Neuron OR Simulator)”).

Center area

The center area displays the content for the model.
The bar on top contains three selectors on the left side,
which allow to switch between different content for the center area:

	DOC
	model documentation (section contains a reference to the content within the NEST documentation in the upper right corner)

	EXPLORER
	diagram(s) of the simulation results for an exemplary network containing this model (code can be found in the right sidebar)

	EDITOR
	input fields to adjust all parameter settings, including value, value range, displayed unit and label, but also the settings for the input field in NEST Desktop

Right sidebar

Here you find the following three icon buttons in the sidebar to dislay these information:

	Defaults
	default values for all parameters (even for some which cannot be altered in NEST Desktop)

	Model
	input fields to change the parameter values (options can be adjusted in the “EDITOR” section of the center area)

	Code
	code for the exemplary network which is used to generate the diagrams in the “EXPLORER” section of the center area

 Structural Overview

Structural Overview

General layout concept of the interface

NEST Desktop consists of three segments with different purposes.

[image: NEST Desktop]

The layout of NEST Desktop with the three main areas (1) - (3).

The left column (1) shows the navigation to route pages.
The center area (2) renders the main content of the page,
whereas the right column (3) displays the controller for content modification.

Navigation sidebar

The navigation sidebar is the main navigation element and available in (nearly) every view.
It contains the following icon buttons, which lead to the pages described below.

For a lot of these buttons, there are further options available via right click.

	Project
	create and edit networks as well as run simulations

	Model
	manage and edit your models

	Settings
	settings of NEST Desktop (backend, user interface, etc.)

	Help
	reference to the documentation on ReadTheDocs

	About
	info about NEST Desktop

For the sections Project and Model, the navigation sidebar will be extended with a second sidebar,
containing a list of available projects and models, respectively.

Main content

This area displays the main page content.
In the project and model section, it contains a header bar with the possibility to select different sub-views
and - in the project section - also the edit history as well as the button to start a simulation.
Performing a right click on the simulation button opens a dropdown menu, which offers some basic simulation options.
On the right side, it contains a sidebar (described below) to control and edit the content, e.g. parameter values, etc.

Controller sidebar

This sidebar allows to edit the content.
A lot of its functions can also be found in the context menu of the main section.
Please be aware that node names will offer a dropdown menu on left click,
while the connection arrows offer such a menu on right click.
Please be aware that some content requires a successful simulation execution to exist.

 About view

About view

This view shows the program info about NEST Desktop.
In the center, you can see a short explanation as well as the technical details.

At the bottom, you will find further references for background information.

In a slightly varied form this view is used as the landing page (containing buttons to start a new project or load one) when yor start NEST Desktop.

 Model view

Model view

Left sidebar

In this view you can manage your models.
The left sidebar shows a list of the available models.
You can search the models list in the search bar on top of the list.
Below the search bar, you have the possibility to select the following filter options regarding node type and model source:

	Installed
	selects only models which are installed locally

	GitHub
	selects only models which are available on GitHub

	Neuron
	selects all neuron models

	Stimulator
	selects all stimulator models

	Recorder
	selects all recorder models

	Synapse
	selects all synapse models

Please be aware that the model source filters work like a logical AND, while the node type filters work like a logical OR.
The node and source filters are combined with a logical AND (e.g. “(Installed AND GitHub) AND (Neuron OR Simulator)”).

Center area

The center area displays the content for the model.
The bar on top contains three selectors on the left side,
which allow to switch between different content for the center area:

	DOC
	model documentation (section contains a reference to the content within the NEST documentation in the upper right corner)

	EXPLORER
	diagram(s) of the simulation results for an exemplary network containing this model (code can be found in the right sidebar)

	EDITOR
	input fields to adjust all parameter settings, including value, value range, displayed unit and label, but also the settings for the input field in NEST Desktop

Right sidebar

Here you find the following three icon buttons in the sidebar to dislay these information:

	Defaults
	default values for all parameters (even for some which cannot be altered in NEST Desktop)

	Model
	input fields to change the parameter values (options can be adjusted in the “EDITOR” section of the center area)

	Code
	code for the exemplary network which is used to generate the diagrams in the “EXPLORER” section of the center area

 Project section

Project section

The project section manages all project-related tasks.

Sidebar

A click on the project switches to the project area.
If you are already in that area, this button toggles the list of projects, a second sidebar.
In that list, you can manage your projects, e.g create, rename, arrange or delete them.

See also

	:doc:’/user/usage-advance/project-view’

Main content of the page

In the project area, the main content consists of an area,
where you can switch between the network graph of the project,
the results of the simulation and the print view of the simulation results.
The slider in the top bar gives the possibility to switch between these views.
For the simulation results, there is also the possibility to switch between
2D and 3D representation, if the results have spatial properties.

The top bar contains the button to start the simulation.
A right click offers further options.

 AppImage |linux|

AppImage |linux|

[image: ../../_images/App-image-logo.svg]
You can download an AppImage from the releases page [https://github.com/nest-desktop/nest-desktop-AppImage/releases].

Click on the .AppImage file to open NEST Desktop.

Note

Start the API Server of NEST Simulator manually before you open NEST Desktop.

 Apptainer |linux|

Apptainer |linux|

[image: ../../_images/apptainer-logo.png]
Apptainer, former Singularity, is an application container for Linux systems.
For more information read the full documentation of Apptainer
here [https://apptainer.org/].

Get recipes

	Clone a working copy from the repository and go to the folder:

git clone https://github.com/nest-desktop/nest-desktop-apptainer
cd nest-desktop-apptainer

	Register the bash command for NEST Desktop Apptainer:

export PATH=$PATH:$PWD/bin/

Note

You will have to repeat this every time you end a terminal session.
If you like to register this command permanently,
please proceed according to the full documentation [https://github.com/nest-desktop/nest-desktop-apptainer].

Build image

	Build the Apptainer images (it will ask for sudo password):

nest-desktop-apptainer build

Note

This command (and the following ones) need to be executed inside the folder
where the container files are located, i.e. the nest-desktop-apptainer folder.

Start container

	Start the Apptainer instances of NEST Desktop and NEST Simulator:

nest-desktop-apptainer start

Now NEST Desktop is started.
You can use NEST Desktop in the web browser at http://localhost:54286.

The installation is now complete!
Now we can start constructing networks for the simulation!

For more information read the full documentation of NEST Desktop Apptainer [https://github.com/nest-desktop/nest-desktop-apptainer].

Warning

If the apptainer (esp. NEST Simulator) is running, your system is exposed for unauthorized access!

 Conda |linux| |windows| |apple|

Conda |linux| |windows| |apple|

[image: ../../_images/conda-logo.png]
Anaconda provides packages for NEST Desktop [https://anaconda.org/conda-forge/nest-desktop].
and NEST Simulator [https://anaconda.org/conda-forge/nest-simulator].
These packages can be installed with Conda.
We highly recommend installing at least version 3 of NEST.
Since NEST 3, the API server (i.e., NEST Server) is already implemented.

Install with Conda

	Create a Conda environment called nest3 and install NEST Simulator:

conda create -n nest3 nest-simulator

	Activate the Conda environment nest3:

conda activate nest3

	Install the dependencies for the API Server of NEST Simulator:

conda install flask flask-cors RestrictedPython gunicorn

	Install NEST Desktop

conda install nest-desktop

Start with Conda

	Start NEST Server as the back end:

The API Server for NEST Simulator is referred to as NEST Server.

nest-server start

NEST Server is now running at http://localhost:52425.

	Start NEST Desktop (in another terminal session):

nest-desktop start

NEST Desktop is now started and available in the web browser at http://localhost:54286.

The installation is now complete!
Now you can start constructing networks for the simulation!

See also

For more information read the full documentation of the command API
here.

 Docker Compose |linux| |windows| |apple|

Docker Compose |linux| |windows| |apple|

[image: ../../_images/docker-compose-logo.png]
Docker is a virtualization software packaging applications and its dependencies.
Docker Compose is a tool for running multi-container applications on Docker which uses the Compose file format.

See also

For further information, please see the official page of Docker Compose [https://github.com/docker/compose].

Installation

Docker Compose is available on multiple platforms.
This guide demonstrates some of the ways to install it on Linux, Windows and Mac.

Linux |linux|

Install Docker and Docker Compose in Terminal

apt install docker.io docker-compose

Windows |windows| and macOS |apple|

Docker Compose is included in Docker Desktop for Windows and macOS.
For more information, take a look at the installation guide of Docker Desktop [https://www.docker.com/get-started].

Pull and start Docker containers

1. Get the configuration file for Docker Compose
(docker-compose.yml [https://raw.githubusercontent.com/nest-desktop/nest-desktop/main/docker-compose.yml])

wget https://raw.githubusercontent.com/nest-desktop/nest-desktop/main/docker-compose.yml

	Start NEST Desktop and NEST Simulator in a single command:

docker-compose up

Now, the service starts the containers for NEST Desktop and NEST Simulator.
You can use NEST Desktop in the web browser at http://localhost:54286.

The installation is now complete!
Now you can start constructing networks for the simulation!

See also

For more information (like running the containers without root password, etc.),
please read the full documentation of NEST Desktop Docker [https://github.com/nest-desktop/nest-desktop-docker].

 Python |linux| |windows| |apple|

Python |linux| |windows| |apple|

[image: ../../_images/python-logo.png]
PyPI contains packages of NEST Desktop and NEST Simulator.
We recommend to install both packages.

NEST Simulator

	Install NEST Simulator (SKIP THIS STEP IF YOU HAVE NEST 3 INSTALLED.):

Read the full installation guide of NEST Simulator here [https://nest-simulator.readthedocs.io/en/latest/installation/index.html].

We highly recommend installing NEST 3. With NEST 3, the API server (i.e., NEST Server) is already implemented.

	Install the dependencies for the API Server of NEST Simulator:

pip install flask flask-cors RestrictedPython gunicorn

	Start NEST Server as the back end:

The API Server for NEST Simulator is referred to as NEST Server.

nest-server start

NEST Server is now running at http://localhost:52425.
You can find the detailed information on NEST Server here [https://nest-simulator.readthedocs.io/en/latest/connect_nest/nest_server.html].

NEST Desktop

	Install NEST Desktop

NEST Desktop is available on PyPI and can be installed with the pip command:

pip3 install nest-desktop [--user] [--upgrade]

For more information, please read the complete installing guide here.

	Start NEST Desktop (in another terminal session):

nest-desktop start

Now NEST Desktop is started.
You can use NEST Desktop in the web browser at http://localhost:54286.

The installation is now complete!
Now you can start constructing networks for the simulation!

See also

For more information read the full documentation of the command API
here.

 Snap |linux|

Snap |linux|

[image: ../../_images/snapcraft-logo.png]
You can download NEST Desktop via Snap.

snap install nest-desktop

The installation is now complete!
Now you can start constructing networks for the simulation!

 Command API

Command API

This documentation guide provides detailed information about the command nest-desktop.

Show the usage of the nest-desktop command:

nest-desktop

Usage options

NEST Desktop

Usage: nest-desktop status|start|stop|restart [-h <HOST>] [-p <PORT>]

Commands:
 status display the status of NEST Desktop
 start start a new server instance for NEST Desktop
 stop stop a server instance running on <HOST>:<PORT>
 restart restart (i.e. stop and start) a server on <HOST>:<PORT>

Options:
 -h <HOST> use hostname/IP address <HOST> for the server [default: 127.0.0.1]
 -p <PORT> use port <PORT> for opening the socket [default: 54286]

Environment variables

You can set environment variables for host and port before you start NEST Desktop.

export NEST_DESKTOP_HOST="0.0.0.0"
export NEST_DESKTOP_PORT=54286

nest-desktop start

 Construct networks

Construct networks

If you want to construct a network, you will have to open the network editor.
The network editor shows the network graph composed of nodes (shapes) and connections (lines).

[image: ../../_images/network-editor.png]

Create nodes

[image: ../../_images/create-nodes.gif]
In order to create a new node, you can click with the right mouse button in the network editor
and a pie panel with three letters appears to select an element type.
A node is divided into three element types:
stimulus (S), recording (R) device and neuron (N).
Then it creates a node of the selected element type.

Connect nodes

[image: ../../_images/connect-nodes.gif]
Forming a network of nodes is defined by making connections between and within nodes.
In order to connect nodes, you can click on a connector of a node,
then move the mouse towards anther node and finally click on a target node.
It creates a connection between source and target nodes.

Hint

By pressing the hotkey ALT and clicking a node at the same time,
you enable the connecting mode or continue connecting other nodes.

Select model and parameters

[image: ../../_images/edit-node.gif]
You are able to select the model of a node in the network controller.
Then it shows a list of parameters which you might want to work on.
Finally, you are able to change the values of visible parameters.

 Explore activity

Explore activity

[image: ../../_images/activity-explorer.png]
The network activity is composed of neuronal properties (positions and ids of neurons)
and recorded events from recording devices.
Events can be subdivided in two groups: spike events and analog signals.
Spike events contain times and ids of the senders emitting events to the recording devices
which can be considered as collectors (spike recorder).
Analog signals contain continuous quantities from the recording devices
aka samplers (voltmeter or multimeter)
which query their targets at given time intervals.
Network activity can be explored in Activity chart graph ([image: chart-line] or [image: chart-scatter-plot]) Activity animation graph ([image: axis-arrow]), or Activity statistics ([image: stats]).

 Simulate networks

Simulate networks

[image: ../../_images/simulation-button.gif]
You can click on the SIMULATE button to start the simulation of your network.
In the code editor you can inspect the generated script code.

_images/project-lab-book.png
PG1
mean firing rate
N1

SR1

EXPLORER

POISSON GENERATOR

IAF PSC ALPHA

SPIKE RECORDER

spike activity

6500 Hz

PG1
synaptic weight

N1

‘ > SIMULATE v‘

Keml

<>

Cote

N1

Ay

10 pA

SR1]

Stz

_images/project-menu.png
+ ¢ B 3 W e

Search project Q
5 projects
current input)
3 nodes, 2 connections /' Rename project
spike Input © unload project

3nodes, 2 connections
© Reload project

spike activity
3nodes, 2 connections € Duplicate project

G Exportproject
spatial neurons,

3nodes, 2 connections 5 oeleteproject
spatial spike activity S —
3nodes, 2 connections

_images/program-overview_expanded.png
]

Soarch pojoct

e oot

.

ot s sy

current input

s
[ES——
o

—

_—

st

waeogro

wn >

>

w g

_images/project-bar.png
& q .
EDTOR EXPLORER LABBOOK spike activity paSIMULRTE

i

_images/project-nav.png
e + G B 3 @ e

Search project Q
m 5 projects
Mol current input

3 nodes, 2 connections.

spike Input
3 nodes, 2 connections

spike activity
3 nodes, 2 connections

[

_images/project-toolbar.png
+ OB 3 m &

_images/kernel-settings.png
SIMULATION KERNEL
local number of threads
® .

1 2
simulation resolution (ms)
e

001 01

seed ofghe random number generator

O randomize seed

SIMULATION

simulaton time (ms) g

0

1000

<P

Coe

]
=

_images/model-editor.png
. alternating curre

label
alternating current

Recordables: 1

id value unit label input input specifications
mn o max s
amplitude PA Amplitude of sine current valuesli. ~ -1000 1000 1
mn o omax sep
frequency 0 Hz frequency valuesli. ~ 0 100 1
mn o omax sep
offset 0 PA constant amplitude offset valuesli. ~ 0 1000 1
mn omax step
phase 0 deg phase of sine current valiesli. ~ 0 360 1
mn omax s
start 0 ms starttime valuesli. ~ 0 1000 1
mn o omax sep
stop 1000 ms stop time valuesli. ~ 0 1000 1

UPDATE MODEL FROM GITHUB.

_images/model-explorer-projects.png
EXPLORER

[~

P RRKRR

step current (up/down)

current steps

spikes (up/down)

regular spikes steps

Polsson spikes steps.

spike activity

_images/model-doc.png
alternating current

ac_generator — Produce an alternating current (AC) input

ac_generator - Produce an alternating current (AC) input

Description
This device produces an AC input sent by CurrentEvents. The current is given by

1(1) = offset + amplitude - sin(w? + ¢)
where

= 27 - frequency
_ phase
(T

Al stimulation devices share the parameters start and stop, which control the stimulation period. The property origin is a
global offset that shifts the stimulation period. Al three values are set as times in ms.

_images/model-explorer.png
-60.04

-60.96

-60.08

Membrane potential [mV]
3

7002

7004

7006

100

400

500

Time [ms]

700

800

> SIMULATE

_images/model-nav.png
a
oxZ
Prject

(SN2

Search model

= 8 nstalled @

14 models
rator

ac_gener
@ stimulator

de_generator
@ stmulator

hh_psc_alpha
@ neuron

80

80

80

_images/models-import.png
Import models

Select a source

) Import from GitHub ~ ~

Select elementtype Select fle

() newon ~ aeif_condjson

4models found. Select models to import

Model

aeif_cond_alpha

aeif_cond_alpha_multisynapse

aeif_cond_beta_multisynapse

aeif_cond_exp

Label

AEIF cond alpha

AEIF cond alpha multisynapse

AEIF cond beta multisynapse

AEIF cond exp

Version

Valid Selected

AN NN

CANCEL IMPORT

_images/models-menu.png
MODEL!

e3

B o

Hn =

Reload models.

Export models

Import models,

Delete models

Reset all models

_images/model-view.png
e B

Search model

= 8 Installed €

13 models

_images/models-filter-tag.png
8
(9}

Nofilter tag

Installed

GitHub

Neuron

Recorder

stimulator

Synapse

_images/nest-desktop-nrp.png
Az NRP Husky Braitenberg Spikes
Proct

[n:] 10

Vol

R R
L
T

OLERTE R T
fLL

Neuron ID

-

B
Settnge

| spikesofsrt

Fen

1500 2000 2500 3000 3500 4000

sbout

Brain Editor x

Brain Editor

® 0 e

Populations

» sensors,
» actors
» record

Simutstion time: 09 60:00:0

Reaitime: 00 00:00:05 nrpuser
Reaitineout 0 00113:14)
Fo

This file contains the setup of the neuronal ne
image recognition

pragma: no cover

7 import nest

__author__ = 'LorenzoVannucci

nodes = nest.GetNodes ()
circuit = nodes[:8]

populations = {"circuit": circuit}

_images/nest-desktop-visimpl.png
B NESTDesktop

PROJECTS ~

5
oKL

EDITOR

RER

a@ s s E

[v &

1 import nest
2 inport numpy

4 nest.Resetkernel ()

6 try:
7 nest.Install('insitemodule')
except:

pass

10
11 # set sinulation kernel
12 nest.SetKernelstatus({

13 "local num_threads": 1,
“resolution”: 1,
“rng_seed": 1

b

Create nodes
nl = nest.Create("iaf_psc_alpha", 800, params={
}, positions= nest.spatial.free(
nest. randon.uniforn(-0.5, 0.5),
nun_dinensions=3
)

2/)

5 n2 = nest.Create("iaf_psc_alpha’, 200, params={
26 1, positions= nest.spatial.free(

nest. randon.uniforn(-0.5, 0.5),
nun_dinensions=3

2)

30))

31 pgl = nest.Create("poisson_generator”, 1, params={
“rate": 68000,

EED)]

34 srl = nest.Create("spike_recorder”, 1, params={

35 “record_to": “insite’,

6 h

37 sr2 = nest.Create("spike_recorder”, 1, params={
“record_to": "insit

b

40
41 # Copy synapse models

42 nest.CopyModel (*static_synapse", "Excitatory”, params={
43 "weight': 2,

b

nest.CopyModel (“static_synapse’, “Inhibitory", params={
“weight": -8,

b

Connect nodes

nest. Connect(n1, nl, conn_spe
“rule": "pairwise_bernoulli®,
“pr: 0.2,

Kemel

<>

Cote

ey

=

File Options

Stackviz Tools Help

BEEmBE W X DE o

‘ A
P—

Q

i\|ﬂu|h\h|i|llmlﬂiu|||l\ |IﬂM\I\||\|\hﬂ|\llﬂl

simPart

| A

®
Selection | Groups | Attribute
Current visualization groups
Import from... Clear
Load Save
Subset 0 x
v active
#800
Subset 1 x
v active
#200
Playback Configuration
‘Simulation playback Configuration
‘Simulation timestep: 100000 [+
Timesteps per second: 20,00000 |+
Step playback duration (s): 5,000 P
Visual Configuration
Selection
e
®
t=428.124 | 854|
0
#4000

Playat...

_images/nest-desktop-logo.png

_images/model-toolbar.png

_images/neuron-shapes.png
4
[o}—(

_images/neuronal-activity-tsodyks.png
-60.86

-60.88

-60.9

[mv]

-60.02

-60.04

Membrane potential

-60.96

-60.08

70—

200 400 600 800

Time [ms]

—— V.mofvm1
—— V_mofvm2

—— V_mofvm3

_images/network-history.gif
K 9

_images/openshift-logo.png

_images/node-shapes.png

_images/nuspic.png
Network » @ Hodgkin-Huxley » | 33 (' 1 month ago) ~ | # Reset | Solution

Nodes
Id Label Targets Status
1 Neuron 3,4,6,7 v_m: -57.7
2 Neuron 3,4,6,7 v_m: -57.5
3 Neuron 4,5,7 -50.1
4 Neuron 1,57 v_m: -73.1
5 Neuron 1,2,7 v_m: -73.1
6 Neuron 4,5,7 V_m: -58.8
7 Spike Detector
8 Voltmeter 1,2,3,4,56
9 Poisson Generator 1,2 start: 200, stop: 1200, rate: 1200
10 Poisson Generator 3,4 start: 800, rate: 1800, stop: 2000
11 AC generator
12 AC generator 4
13 AC generator
Model Poisson Generator
Mean firing rate (Hz) 1200
Enter only positve values.
Start time (ms) 200
Enter only positve values.
End time (ms) 1200
Enter only positve values.
save

Network layout

O)

® Tour

Weights (pA)

1a

10

11

12

1

@ Help

Options

Delays (ms)
2 3
16
16
2
1 1
1

30

30

34

34

"

16

16

Duration (ms) 2000.0

e

Same seed

Overwrite results

Save & simulats

Results

lut Spike Detector L2 Voltmeter

Neuron ID

Spike count

Rate (Hz)

length of simulation

@ Comment | & Like

Raster plot
2 .
3 .
Binwidth 5ms| 10 ms |20 ms| 50 ms| 100 ms
Histogram of population activity
N .
. Il LIkl hn
0 500 1,000 1,500 2,000
Time (ms)
Smoothed histogram of neural activity
50
oS\ \/\\/ VATAY
0 500 1,000 1,500 2,000

_images/network-editor.png
2P
oA, i i -
e & spike activity ‘ > SIMULATE ‘

mE | e & [e] o =
PGl POISSON GENERATOR et
I
populggon size |
-
‘mean firing rate (Hz) Kemel
6500
N1 IAF PSC ALPHA >
. cote
populstiongize o0
SR1 SPIKE RECORDER
PG1 2 N1
@ ﬂ ‘connection rule B
alltoall v e
n N1 2 SR1
connection rule
alltoall -
o
fd
Setngs
Hep

P~

_images/network-graph.png

_images/network-controller.png
o & [e] o ©
nc1 DIRECT CURRENT et
I
populggon size |
-
ampliuge of curent (pA)g | Kemel
‘start time fns) T
=8 100 &
stop time (ms) Code.
] 00
N1 IAF PSC ALPHA
I
popuiggon size |
ity of the b i
‘capacity of the membrane(pF) 50 =
— S
VM1 VOLTMETER
time interval of recording (ms)
e . .
oo 01 1 10
| pc1 3 N1
| VM1 3 N1

nav.xhtml

 Table of Contents

 		
 NEST Desktop

_static/file.png

_static/img/screenshots/releases/v1.5-spike_activity.png
< @ @a Simulate
Spike trains.
U,

Rise time of the excitatory synaptic alpha fun... 2 ms

Rise time of the inhibitory synaptic alpha func...2 ms

3| Spike detector -
Starttime oms
Stop time 1000 ms
VANERINO)}
Altoall ~
Static synapse ~

Synaptic weight 10 pA

_static/img/screenshots/releases/v1.5-neuronal_activity.png
<

© a Simulate

A+ Neuronal states

Q# stimulator Neuron Recorder

Rise time of the excitatory synaptic alpha fun... 2 ms.

Rise time of the inhibitory synaptic alpha func...2 ms.

3 Voltmeter -

— o
ANIRINO)

I .

Time [ms]

_static/nest-desktop-logo.png

_static/img/screenshots/releases/v2.0-model_view.png
Model : | = iaf_psc_alpha

T Searchmode Nane: iaf_psc_alpha - Leaky integrate-and-fire neuron model. Parameter Value

ac_generator = Description: o 250
iaf psc_alpha is an inplementation of a leaky integrate-and-fire model

e_generstor “ with alpha-function shaped synaptic currents. Thus, synaptic currents e o
and the resulting post-synaptic potentials have a finite rise time.

h_psc.lpha The threshold crossing is followed by an absolute refractory period e 2
during which the membrane potential is clanped to the resting potential.
The linear subthresold dynamics is integrated by the Exact

faf.cond_alpha Integration scheme [1[1]. The neuron dynamics is solved on the time Le)

grid given by the computation step size. Incoming as well as emitted
ot psc_spha spikes are forced to that grid. " -
An additional state variable and the corresponding differential -m

equation represents a piecewise constant external current

multimeter The general framework for the consistent formulation of systems with V_min -inf
neuron Like dynamics interacting by point events is described in

noise generator [1]. A flow chart can be found in [2], Vst 2
Critical tests for the fornulation of the neuron model are the
conparisons of sinulation results for different conputation step

parat_neuron sizes. sli/testsuite/nest contains a number of such tests i 55
The iaf psc_alpha is the standard model used to check the consistency

poisson_generstor of the nest sinulation kernel because it is at the same time complex RN N
enough to exhibit non-trivial dynamics and simple enough compute endt
relevant measures analytically.

spike.detector avalble o

spike_generator Paraneters: peto.ca o0t
The following paraneters can be set in the status dictionary.

sttic_synapse copaciy o

step_curtent_generator Menbrane potential cementipe —

Resting membrane potenial
Capacity of the membrane
Membrane tine constant clementsize %
Duration of refractory period
spike threshold

volimeter

Reset potential of the membrane fozen faise
fausynexms Rise time of the excitatory synaptic alpha function
fausyninms Rise time of the inhibitory synaptic alpha function globaLid o
Ie PA Constant input current
Vinin mv Absolute lower value for the membrane potenial ctonsations B

\endverbatin
local e

_static/minus.png

_static/img/screenshots/releases/v2.0-lab_book.png
B N L | A 2

Qearch simulation

Spike trains
Spike input

Current input

1 second ago

1 second ago

o

b Poisson generator 1)

Mean firing rate
Starttime
Stop time

Capacitance of the membrane.
Leak reversal potential

Constant external nput current

Initial membrane potential

Reset potential of the membrane

Spike threshold

Duration o refractory period

Membrane time constant.

Rise time of the excitatory synaptic apha function

Rise time of the inhibitory synaptic alpha function

Starttime

Stop time

o 1AF psc alpha)

n Spike detector m

Connection ule
Synapse model
Synapse weight
Synapse delay

Connection rule

Synapse model
Synapse weight
Synapse delay

alLto_al
statc_synapse
100 pA
10ms

alLto_al
statc_synapse
10 A
10ms

_static/img/screenshots/releases/v2.0-neuronal_activity.png
® =2 @ B o /

PS Al Stimulator Newon Recorder
Neuronal activity
Poisson generator
v g
Populaton size 1
@ -e0 o Vibeno | Meanfiingate 10 He
Start time oms
—— V.maverage
Stop time 10000 ms
——Vmofp-11
- @ #Fescaipha
Populaton size 10
-6998
=
E Alltoall
£ s statiosmapse
g
o Synaptc weight
§
£ Synaptic delay
§
2 00 -
Altoal
Staic synapse
-69.995
Synaptc weight
Synaptic delay
-0
200 00 600 800
Time [ms]

Edit chart »

_static/plus.png

_static/img/screenshots/releases/v2.0-network_editor.png
ike trains

X B ©

Al Stimulator Neuron Recorder

» Poisson generator

Population ize 1
Spatal [m]
Mean fring rate ™
Starttime ms

Stop time

° 1AF psc alpha

Population size 100
Spatal [m]
Capacitance of the membrane o O
Leak eversal potential w0
Constant exteral nput current o O
Initil membrane potential w0
Reset potential of the membrane w0
Spike threshold w0
Duraion ofrefractory period ms O
Membrane time constant ms O
Rise time ofthe exctatory synaptic alpha func.ms (]
Rise time of the inibitory synaptic alpha func.. ms (]

n Spike detector

Sarme

sop e

u -
Comection e

Synaptic model
Synaptic weightpA

Synaptic delayms

_static/img/screenshots/releases/v2.1-lab_book.png
Simulation i

— []

Spatal newrons 9seconds ag0 L

Mean iing rate 65000 He alLto.al
Starttime: ooms statc_synapse
Stop time. 100000 ms 100 pA

10ms

© 1epscapha

Capacitance of the membrane 2500 pF
Lesk reversalpotentil T00mv alLto.al
Constant exterl input curent 00pA statc_synapse
Inial membrane potentil T00mv 10 A
Reset potertial of the membrane T00mv 10ms
Spike threshold s50mv
Duration o efractory period 20ms
Membrane time constant 100ms
Risetime of the excitatory synaptic alpha function 20ms

Rise time oftheinibitory synaptic alpha functon

B spike detector

Starttime: ooms
Stop time. 100000 ms.

_static/img/screenshots/releases/v2.0-spike_activity.png
o G Q+iie Al Stimulator Neuron Recorder
Spike activity Poisson generator
v
Population size 1
@ 6500 Hz.
100
° 1AF psc alpha
Population size 100
20
All to all
o ®
<
§ Static synapse
5
g
z Synaptic weight
0
Synaptic delay
n -
2 Alltoall
Static synapse
N Synaptic weight
Synaptic delay
20
5 15
8
g 1w
P L)
0 200 400 600 800 1000

Time [ms]

_static/img/edited/installation-guide.png
() 3 -
=
Front end

nestinest-desktop

\
! I
I

|
I

|
I

I
|

I
1

I
1

|
|

|
|

I
: i

I
|

I
1

|
|

|
|

I
|

I
1

|
1

|
|

|
|

I
|
\ I

NEST Desktop

Back end

NEST Simulator

X

nestinest:-simulator

I
I
I
I
I
I
|
I
I
I
I
I
I
I
|
1
Technique :
|
|

Docker Compose

Singularity

a3
S

nest/nest-desktop
+

s
S

nestinest-simulator

-

S
S

Singularity

il
|

Y $H
Python

pip install nest-desktop.
+

Other tools

Homebrew

Python
+
other tools

_static/img/screenshots/releases/v2.1-network_editor.png
X 8 o

Al Stimulator Newon Recorder

Population size
Mean firing ate

Starttme

Population ize

i S
Capaciance ofthe membrane o
Lesk evrsal potental m
Constant external input curent o
Il memrane potental m

Reset potential of the membrane m

‘Spke theshold m

Duration of refactory period ms
Membrane time constant ms
Rise time of the excitaory synaptic alpha fun._ ms

Rise time ofthe inhibiory synaptic alpha func.. ms

_static/img/edited/conceptual-approach.png
Add nodes Analog signal traces

neuron

Connect nodes

S
E— \

Select node models

b pec spha

1 cond ipha

Activity animation
of spatial network

_static/img/screenshots/releases/v2.1-model_view.png
Model : iaf_psc_alpha

during which the membrane potential is clamped to the resting potential.
The linear subthresold dynamics is integrated by the Exact
iaf_cond_alpha Integration scheme [][1]. The neuron dynanics is solved on the time Le o

grid given by the computation step size. Incoming as well as emitted
P spikes are forced to that grid. M 2
An additional state variable and the corresponding differential -

equation represents a piecewise constant external current

multmeter The general framework for the consistent formulation of systems with Vi nf
neuron Like dynamics interacting by point events is described in

noise_generator [1]. A flow chart can be found in [2]. et -
Critical tests for the formulation of the neuron model are the
comparisons of simulation results for different computation step

partotneuron sizes. sli/testsuite/nest contains a number of such tests i 5
The 1af_psc_alpha is the standard model used to check the consistency

poisson_generstor of the nest sinulation kernel because it is at the same time complex J—— B
enough to exhibit non-trivial dynamics and simple enough compute Heng
relevant measures analytically.

spike.detector avalble o

spike_generator Parameters: peto.ca o0t
The following parameters can be set in the status dictionary.

satic_synapse. \verbatin embed: rst capacty o

step_currentgenerator v v Menbrane potential et e Learon
EL v Resting membrane potenial &
Cn oF Capacity of the membrane

volmeter tau_m ns Membrane tine constant clementsize %
t ref ns Duration of refractory period
Vth v Spike threshold fozen e
Voreset nv Reset potential of the membrane
tau_syn_ex ms Rise tine of the excitatory synaptic alpha function
tau_syn_in ms Rise tine of the inhibitory synaptic alpha function globaLid o
Ie PA Constant input current
Vnin v Absolute lower value for the membrane potenial stonttions N

\endverbatin

local e

_static/img/screenshots/releases/v1.5-lab_book.png
Neuronal states

Details Description

PN

Starttime
Stop time

@) v

Capacitance of the membrane
Leak reversal potential
Constant external input current

Initial membrane potential

Reset Potential of the membrane

Spike threshold

Duration of effactory period

Membrane time constant

Rise time of the excitatory synaptic alpha function
Rise time of the inhibitory synaptic alpha function

3 | Voltmeter

Time interval of recording
Starttime
Stop time

+»

Python script Raw view

m
10.0Hz

0oms
10000ms.

(10)

250.0pF
700mv
00pA
700mv
700mv
550mV
20ms
100ms
20ms
20ms

m

01ms
0oms
10000ms.

Comment

Connection rule
Synapse model
Synapse weight

Synapse delay

DRNO;
ot

Synapse delay

Simulate

allto_all
static_synapse
1.0pA
1.0ms

allto_all
static_synapse
1.0pA
1.0ms

_static/img/screenshots/project/project-lab-book.png
PG1
mean firing rate
N1

SR1

EXPLORER

POISSON GENERATOR

IAF PSC ALPHA

SPIKE RECORDER

spike activity

6500 Hz

PG1
synaptic weight

N1

‘ > SIMULATE v‘

Keml

<>

Cote

N1

Ay

10 pA

SR1]

Stz

_images/weight-recorder.png
—— V_mofum1 B

34 # Copy synapse models
-6975 —— V_mofvm2 35 nest.CopyModel (*tsodyks_synapse”, "tsodyks_fac”, params={

3% “weight": 250,

—— V.mofvm3 = R

—— weightsofwr | 8 "faupsc’: 0.3,
39 “tau fac': 53,

—— weightsofwr2 | 40 “"tau_rec": 150,

“weight_recorder”: wrl,
b
nest. CopyModel (“tsodyks_synapse®, *tsodyks_dep”, params={

3

£

“weight_recorder": wr2,
b

8

52 # Connect nodes
2 3 nest.Connect(nl, n4, syn spec="tsodyks dep)
S 0 54 nest.Connect(nl, n2, syn spec={
2 55 “weight": 10,
» 5 h
57 nest.Connect(n1, n3, syn_spec="tsodyks fac")
55 nest.Connect (val, na)
10 59 nest.Connect (vi2, n2)
60 nest.Connect(vn3, n3)
200 400 600 00 61
62 # Run sinulation
Time (ms) = nest.simulate(1000)

_static/img/screenshots/project/project-nav.png
e + G B 3 @ e

Search project Q
m 5 projects
Mol current input

3 nodes, 2 connections.

spike Input
3 nodes, 2 connections

spike activity
3 nodes, 2 connections

[

_images/weight-recorder-graph.png

_static/img/screenshots/project/project-menu.png
+ ¢ B 3 W e

Search project Q
5 projects
current input)
3 nodes, 2 connections /' Rename project
spike Input © unload project

3nodes, 2 connections
© Reload project

spike activity
3nodes, 2 connections € Duplicate project

G Exportproject
spatial neurons,

3nodes, 2 connections 5 oeleteproject
spatial spike activity S —
3nodes, 2 connections

_static/img/screenshots/project/projects-export.png
Export

Select projects to export

Project name
current input
spike input
spike activity
spatial neurons

spatial spike activity

Created at

11/22/2022, 4:50:52 PM

11/22/2022, 4:50:52 PM

11/22/2022, 4:50:52 PM

11/22/2022, 4:50:52 PM

11/22/2022, 4:50:52 PM

Updated at

11/22/2022, 450:52 PM

11/22/2022, 450:52 PM

11/22/2022, 450:52 PM

11/22/2022, 450:52 PM

11/22/2022, 450:52 PM

Validate

v

selected

Activities

CANCEL

_static/img/screenshots/project/project-toolbar.png
+ OB 3 m &

_static/img/screenshots/project/projects-menu.png
Lo +

Hn =

New project

Reload projects

Export projects

Import projects

Delete projects

Reset ll projects

_static/img/screenshots/project/projects-import.png
Import projects
Select source and file

) drive
©) GitHub

@ URL

time constants in cond

Path
) simple_neuron_models

File

cond_time_constants.json

port:

Created at

7/20/2021,11:22:05 AM

Version

32

Valid

CANCEL

Selected

_static/img/screenshots/releases/v0.15.3-spike_activity.png
NEST Desktop

Spike activity ~ 10/14/2022, 9:10:25 AM P S

0

- @/ Autoscale

H Nodes ~Connections Synapses =~

H

2 @ Model
1AF psc alpha v
Model
Poisson generator v
Population size

. .. o .

N o . . @_\ /@ o Mean firing rate (Hz) oo

Model

L . L Spike detector vV
. PR . P Number of histogram bins
1 10 20 50 100 200
154 e e e PP . P .. . Subchart
. . . e e e e e - No chart v
. . e Subchart data
. e . . Peri-stimulus time histogram (P v
Ordinate of PSTH
Spike g v
20 e e e e . . . - .« . pike count

[100 200 300 400 500 600 700 800 900 1,000

_static/img/screenshots/releases/v0.15.3-neuronal_activity.png
NEST Desktop

-

Neuronal state activity

N

10/14/2022, 9:11:22 AM
¥ Autoscale

NN N\ N NG NG N

N

®
O,
®

Al
7
7

N

S

S o

Nodes Connections

Model

1AF psc alpha

Population size

)

Model

Poisson generator

Population size

o

Mean firing rate (Hz)
Model

Voltmeter

Data series

stack
Subchart

No chart

2 £

Synapses

10

_images/v3.1-model_view.png
IAF psc alpha > SIMULATE

&2 ¢ Q Searchmodel
oo

8 Installed @ iaf_psc_alpha newon & MORE
14 models

i

© O Leakyintegrate-and-fire neuron model
de_generator 80 =
Descri Vose!
hh_psc_alpha 80
laf_cond_alpha 8 O ‘jaf psc alpha’’ is an implementation of a leaky integrate-and-fire model :!:
with alpha-function shaped synaptic currents. Thus, synaptic currents
laf_psc_alpha 80 . ! . .
and the resulting postsynaptic potentials have a finite rise time.
‘multimeter 80
The threshold crossing is followed by an absolute refractory period
nolse_generator © O during which the membrane potential is clamped to the resting potential.
parrot_neuron © O | The linear subthreshold dynamics is integrated by the Exact
Integration scheme [1] . The neuron dynamics is solved on the time
poisson_generator © O grid given by the computation step size. Incoming as well as emitted
spikes are forced to that grid.
‘spike_generator 80
<plke.secorder @ o v additional state variable and the corresponding differential
equation represents a piecewise constant external current.
‘static_synapse 80
The general framework for the consistent formulation of systems with
“% step_cument_generator @ O neuron like dynamics interacting by point events is described in
s [1]_. A flow chart can be found in [2] .
voltmeter 80

Critical tests for the fornulation of the neuron model are the
comparisons of simulation results for different computation step
sizes and the testsuite contains a number of such tests.

HS)

The "“iaf psc alpha'’ is the standard model used to check the consistency
of the nest simulation kernel because it is at the same time complex
S S S S S

i

_static/img/screenshots/project/project-bar.png
& q .
EDTOR EXPLORER LABBOOK spike activity paSIMULRTE

i

_images/v3.1-lab_book.png
HEs

=]

+ Newproject
spike activity

Q Search project

current input
3 nodes, 2 connections.

spike input

3 nodes, 2 connections.

spike activity
3nodes, 2 connections

spatial neurons
3nodes, 2 connections

spatial spike activity
3nodes, 2 connections

PGl
mean firing rate
N1

SR1

spike activity

POISSON GENERATOR

6500 Hz

IAF PSC ALPHA

SPIKE RECORDER

PG1
synaptic weight

N1

SIMULATE

N1
10pA

SR1

Kemel

<P

coe

_static/img/screenshots/network/node-shapes.png

_images/v3.1-spike_activity.png
EXPLORER spike activity > SIMULATE

i
(o weser) + ADD PANEL | a2
8 * sekesofsrt | 1o SPIKE TIMES Mootk
100
=
Wl SPIKE TIMES .
® bin size (ms) Kemel
s 10 2 s 100 0 50 100
2 e
g Il INTER-SPIKE INTERVAL <&
3 a0 bin size (ms) i i .
1 s 10 » Ell o
? Ll CV OF ISI =3
bin size
N 001 002 005 01 02 05 B
s o
S x
3
S
z 0
o 200 200 600 800 1000
100 Time [ms]
5
s0
% 3
o 50 100 150 200 250 300
® Lo -spike interval [ms]
He 5 10
S s
o 04 0.6 08 1

e

cvofisi

_static/img/gif/simulation-button.gif
» SIMULATE

H

_static/img/screenshots/releases/v2.4-network_editor.png
. o Spike activity » Simulate

Al Stimulator Newon Recorder
a S

[[-] [—p—

O Mean iring ate: 8500 Hz

it

Starttme oms 0

- Soptime 10000 ms (]

1AF psc alpha

Capaciance o the membrane

¢ e

Leak reversal potential

‘Constant extemal input curent

A

Intial membrane potential

Reset potentilof the membrane

‘Spike threshold =
P ———
Wembrane imeconstrt
Timeconstantof ity synapee
Timeconstat af iy syapee
IS

_static/img/screenshots/releases/v2.4-lab_book.png
A

A e ccuvy secag Poisson generator -

+ Newnetwork <
Spieactty x [© _
Q sechsimiaton ®

curentous - =
- o

Spatal newrons L™ 65000 Hz | Comectiontype

¢ e

Spatal spke activty eses 1AF psc alpha -

Connection ype

A

‘Spike detector

_static/img/screenshots/releases/v2.4-spike_activity.png
Neuron ID

Spike count.

o wm 4 e &0 fW

Time [ms]

> simulate

Al Stmulator Neuwon Recorder 3

Population size

Mean fiing rate (Ha) =
e

IAF psc alpha

Populationsize

detector

Altosi

Stati synapse

‘Synaptic weight (o)
e S

‘Synaptic delay (ms)

_static/img/screenshots/releases/v2.4-neuronal_activity.png
LB @ Neuronal activity » simiate

& Al stmuatr Neuwon Recorder
Neuronal activity Poisson generator
Popultionsize
L 6997 = 1

Vmottz-11
[oe—
Vi average ot o =
o | 1 pec alpha
ropumtonsize

6958

eoses Altosi

Stati synapse

‘Synaptic weight (b4)

Membrane potential [mv]
g

‘Synaptic delay (ms)

69995

Altoall -

20 a0 00 0

Time [ms] [S

_static/img/screenshots/releases/v2.5-network_editor.png
. ‘} Spike activity » Simulate

Al Stimulator Newron Recorder
a

@ Poisson generator (pg)

Mean firing rate 6500 Hz

Starttime oms

Stop time 10000 ms]

1AF psc alpha

Capacitance of the membrane 250 pF [
Leak reversal potential Fomv
Constant external input current opad
Initial membrane potential Fomv
Reset potential of the membrane Fomv
Spike threshold ssmv [
Duration of refractory period 2ms [J
Membrane time constant 10ms O]

Time constant of the excitatory synapse 2 ms []

2ms]

Vo £ Spike detector (sd) -

Time constant of the inhibitory synapse

O,

‘Synaptic weight

_static/img/screenshots/releases/v2.5-lab_book.png
New project

“ +

Spike activity x [

Q search project

Currentinput st now
V=

Spike input st now
P seiceaciviy Just now

‘Spatial neurons ustnon

‘spatial spike activty st now

m

@ Poisson generator (pg)

Mean firing rate:

IAF psc alpha

Vo 4 Spike detector (sd)

6500.0 Hz.

Connectionrule.
‘Synaptic weight
‘Synaptic delay

Connection e
‘Synaptic weight
‘Synaptic delay

» Simulate

all to_al

10 pA
1ms

all_to_all
pA
1ms

_static/img/screenshots/releases/v2.5-spike_activity.png
Neuron ID

Spike count

100

80

60

a0

20

Spike activity

a0

20

20

10

200

Time [ms]

1000

Spikes of sd1

Al Stimulator Neuron

@ Poisson generator (pg)

Population size

Mean firing rate (Hz)

Alltoall

‘Synaptic weight (pA)

"_—'I -

Alltoall

» Simulate

Recorder

6500

_static/img/screenshots/releases/v2.5-neuronal_activity.png
__ RO

-69.97

-69.975

-60.98

-69.985

Membrane potential [mV]

-69.99 ‘ i

-69.995

Neuronal activity

200

400

Time [ms]

Spike threshold
——Vmof2-11)

—— V.m average

[—
ﬂ Voltmeter (vm)

>

Al Stimulator Neuron

Recorder

Population size.

Mean firing rate (Hz) o

Population size.

*

-

Alltoall -

imulate

N

_static/img/screenshots/releases/v3.0-model_view.png
2 ¥ Q search model iaf_psc_alpha - Leaky integrate-and-fire neuron model

=

Mo ac_generator Descri
dc_generator
a *“iaf psc alpha’® is an implementation of a leaky integrate-and-fire model
ih.psc._slpha with alpha-function shaped synaptic currents. Thus, synaptic currents
{at_cond_alpha and the resulting postsynaptic potentials have a finite rise time.
i The threshold crossing is followed by an absolute refractory period
during which the membrane potential is clamped to the resting potential.
multimeter

The linear subthreshold dynamics is integrated by the Exact
noise_generator Integration scheme [1] . The neuron dynamics is solved on the time
grid given by the computation step size. Incoming as well as emitted

parrot_neuron spikes are forced to that grid.
pel An additional state variable and the corresponding differential
spike_generator equation represents a piecewise constant external current.
spike_recorder The general framework for the consistent formulation of systems with
neuron Like dynamics interacting by point events is described in

static_synapse [1]_. A flow chart can be found in [2] .
step_current_generator Critical tests for the formulation of the neuron model are the

eter comparisons of simulation results for different computation step

sizes and the testsuite contains a number of such tests.

The *“iaf psc alpha'® is the standard model used to check the consistency
of the nest simulation kernel because it is at the same time complex
enough to exhibit non-trivial dynamics and simple enough compute

relevant measures analytically.

note::

i~ 0 e

_static/img/screenshots/releases/v3.0-lab_book.png
Q

=

s

+ Newproject

Spike activity

B00K

x B

Q Search project

Current input
3 nodes, 2 connections

‘Spike input
3 nodes, 2 connections

Spike activity
3 nodes, 2 connections

Spatial neurons
3nodes, 2 connections

‘Spatial spike activity
3 nodes, 2 connections

mean firing rate
N1

SR1

POISSON GENERATOR

6500.0 Hz

IAF PSC ALPHA

SPIKE RECORDER

synaptic weight

> SIMULATE

10.0 pA

_static/img/screenshots/releases/v2.1-spatial_activity.png
Frame Rate

Time step

ootsize

S o — 0

Time window size

— ms

Trail

off -

el ength

o oms

0] e fading

camera

Camers Pasiton x

1

Camers Pasitony

Camers Positonz

Camera motion

Camera spase

Camersotstion theta

_static/img/gif/anim-spike-activity.gif

_static/img/screenshots/releases/v2.2-lab_book.png
+

A

New network

Spike actviy x D]
List of saved simulations o

Q Search simulation

Currentinput 2secag0
Spike input 2secag0
Poisson generator
Spike activity 2secag0
Mean firing rate 65000 Hz Connection rle.
‘Spatal neurons 2seco0 | starttime 00ms ‘Synaptic model
Stoptime 100000 ms ‘Synaptic weight
‘Spatial spike activity 2secag0
‘Synaptic delay

1AF psc alpha

Capacitance of the membrane 250.0 pF
Leak reversal potential 70.0mv

Connection rule:

‘Gonstant external input current 00pA | Synaptic model
Inital membrane potential 700mv | Synaptic weight
Reset potential of the membrane 700mv | Synapic delay

Spike threshold 55.0mV

Duration of refractory period 20ms.
Membrane time constant 100ms
Rise time of the excitatory synaptic alpha function 20ms.

Rise time of the inhibitory synaptic alpha function 20ms.

Spike detector

all_to_al
static_synapse
100 pA
10ms

all_to_al
static_synapse
10 pA
10ms

_static/img/gif/anim-analog-signals.gif

_static/img/screenshots/releases/v2.1-spike_activity.png
B o /

° @ @+ iie

Spike activity

Bxa @ & x* Al stimulator Neuron Recorder

Population size.

e —
100
Mean firing rate (Hz)
0
0
=]
<
§
£ Altoall
3
ES
0 Static synapse
‘Synaptic weight (pA)
‘Synaptic delay (ms)
2
20
S s
8
g 0
L LU L LU LU LU L LD L
g 200 400 600 800 1000

Time [ms]

@

Edit chart »

_static/img/gif/create-nodes.gif

_static/img/screenshots/releases/v2.2-network_editor.png
- ‘} » Spike activity Simulate

A

Al stimulator Neuron Recorder 3

Poisson generator

Population size

Mean rng rate: He
Starttime ms

Stop time

1AF psc alpha

Population size
100

Capacitance of the membrane oF

Leak reversal potential mv
Constant extemal input current oA
Initial membrane potential mv
Reset potentiel of the membrane mv
Spike threshold mv
Duration o refractory period ms
Membrane time constant ms

Rise time of the excitatory synaptic alpha fun... ms

o o e o o o o R R

Rise time of the inhibitory synaptic alpha func...ms

Spike detector

Star time ms O

ms O

Stop time

_static/img/gif/connect-nodes.gif

_static/img/screenshots/releases/v2.2-model_view.png
Y search model P " Valug
a e Leaky integrate-and-fire neuron model. arameter elue

ac_generator cm 250
® . . Description - .
iaf psc alpha is an implementation of a leaky integrate-and-fire model
hh_psc_alpha with alpha-function shaped synaptic currents. Thus, synaptic currents n 70
V= and the resulting post-synaptic potentials have a finite rise time.
ot condspha The threshold crossing is followed by an absolute refractory period
el o during which the membrane potential is clamped to the resting potential. Le 0

The linear subthresold dynamics is integrated by the Exact
p Integration scheme (1{1]: The neuron dynamics 13 solved on the tine . 0
grid given by the computation step size. Incoming as well as emitted

spikes are forced to that grid.

multimeter An additional state variable and the corresponding differential V_min Anf
equation represents a piecewise constant external current.

noise._generator The general framework for the consistent formulation of systems with Vreset 70
neuron like dynamics interacting by point events is described in N
[1]. A flow chart can be found in [2].

parret-neuron Critical tests for the formulation of the neuron model are the Vth 55
comparisons of simulation results for different computation step

poisson_generator sizes. sli/testsuite/nest contains a number of such tests. archiver_Jength o
The iaf psc alpha is the standard model used to check the consistency

ke getector of the nest simulation kernel because it is at the same time complex

plle enough to exhibit non-trivial dynamics and simple enough compute available 0
relevant measures analytically.

‘spike_generator beta_Ca 0001

static_synapse Parameters capacity 0

The following parameters can be set in the status dictionary.

step_current_generator
proueno \verbatin enbed:rst clementtype neuron

voltmeter v n Membrane potential elementsize 696
EL mv Resting membrane potenial
cm pF Capacity of the membrane
tau m ms Membrane time constant frozen felse
t_ref ms Duration of refractory period
v th v Spike threshold globalid o
V_reset mv Reset potential of the membrane
tau_syn ex ms Rise time of the excitatory synaptic alpha function
tau_syn_in ms Rise time of the inhibitory synaptic alpha function Inatantiotions 0
Ie pA Constant input current

v min v Absolute lower value for the membrane potenial local true

_static/img/gif/external-insite.gif

_static/img/screenshots/releases/v2.2-spike_activity.png
m “ Spike activity Simulate

& Al Stimulator Neuron Recorder 3
Spike activity isson generator
~
Y Population size
100 O
Mean firing rate (Hz)
v %
g
. 1AF psc alpha
. psc alp!
F Population size
70 *
60
=]
<
2
£ s
g
2
0 Alltoal
» Static synapse
‘Synaptic weight (pA)
20
‘Synaptic delay (ms)
10
L 2
5
g
5 |||
* | A S A
il | A
0 200 0 600 80 1000

Time [ms] (S

_static/img/gif/edit-node.gif
DIRECT CURRENT

g)pula\ion size

@)

_static/img/screenshots/releases/v2.2-neuronal_activity.png
m “ Neuronal activity mulate

Al Stimulator Neuron Recorder >
& Neuronal activity

~
H 6997 Population size
) — = V.m threshold - . ~~—
Mean firing rate (Hz)
—— V.maverage oo y
g
= —VmofR-11]
-69.975 | 1AF psc alpha 3
Ve ‘ Population size
o
o
-69.98 ‘ n Voltmeter
s
E
z
£ 50985 Altoall
8
4
é static synapse
€ Synapticweight (p4)
g
= 6999
‘Synaptic delay (ms)
-69.995

Alltoall

200 400 600 800

Time [ms] (S

_static/img/gif/external-visimpl.gif

_static/img/screenshots/releases/v2.3-spike_activity.png
ike activity Simulate

G Q+iie Stimulator ~ Neuron Recorder

Poisson generator

o» Population size
100 o
.
i
1AF psc alpha
20 P pi
ya Population size
.
.
a
e
g
:
2
20 ynap:
‘Synaptic weight (pA)
.
‘Synaptic delay (ms)
.
E
5 -
% | A A
:
1 - i o .

Time [ms] LS

_static/img/gif/external-nrp.gif

_static/img/screenshots/releases/v2.3-model_view.png
Y search model P " Valug
a e Leaky integrate-and-fire neuron model. arameter elue

ac_generator cm 250
® . . Description - .
iaf psc alpha is an implementation of a leaky integrate-and-fire model
hh_psc_alpha with alpha-function shaped synaptic currents. Thus, synaptic currents n 70
V= and the resulting post-synaptic potentials have a finite rise time.
ot condspha The threshold crossing is followed by an absolute refractory period
el o during which the membrane potential is clamped to the resting potential. Le 0

The linear subthresold dynamics is integrated by the Exact
p Integration scheme (1{1]: The neuron dynamics 13 solved on the tine . 0
grid given by the computation step size. Incoming as well as emitted

spikes are forced to that grid.

multimeter An additional state variable and the corresponding differential V_min Anf
equation represents a piecewise constant external current.

noise._generator The general framework for the consistent formulation of systems with Vreset 70
neuron like dynamics interacting by point events is described in N
[1]. A flow chart can be found in [2].

parret-neuron Critical tests for the formulation of the neuron model are the Vth 55
comparisons of simulation results for different computation step

poisson_generator sizes. sli/testsuite/nest contains a number of such tests. archiver_Jength o
The iaf psc alpha is the standard model used to check the consistency

ke getector of the nest simulation kernel because it is at the same time complex

plle enough to exhibit non-trivial dynamics and simple enough compute available 0
relevant measures analytically.

‘spike_generator beta_Ca 0001

static_synapse Parameters capacity 0

The following parameters can be set in the status dictionary.

step_current_generator
proueno \verbatin enbed:rst clementtype neuron

voltmeter v n Membrane potential elementsize 696
EL mv Resting membrane potenial
cm pF Capacity of the membrane
tau m ms Membrane time constant frozen felse
t_ref ms Duration of refractory period
v th v Spike threshold globalid o
V_reset mv Reset potential of the membrane
tau_syn ex ms Rise time of the excitatory synaptic alpha function
tau_syn_in ms Rise time of the inhibitory synaptic alpha function Inatantiotions 0
Ie pA Constant input current

v min v Absolute lower value for the membrane potenial local true

_static/img/gif/network-history.gif
K 9

_static/img/gif/manage-projects.gif
a8

i

+ New project
Current input

Q

Current input
3 nodes, 2 connections

Spike input
3nodes, 2 connections

Spike activity
3nodes, 2 connections

Spatial neurons
3nodes, 2 connections

_static/img/screenshots/releases/v2.4-code-editor.png
Neuron ID

Spike count.

i

Time [ms]

» Simuate

kemel models nodes connections events >

1
2
3
4
5
6
7
8

45
46+
a7

anl

import nest
import numpy as np

nest.ResetKernel()

Sinulation kernel
np. random. seed (6)
nest. SetKernelStatus ({
ocal
“resolution”
“rng_seeds”: np.random. randint(9, 1000, 1).tolist()
n

Copy models

nest.CopyModel (*poisson_generator”, *stimulator-a
“rate": 6500

n

hest.CopyModel ("iaf psc_alpha”, "neuron-

nest . CopyModel ("spike detector®, "recorder-c*)

Create nodes
nodeA = nest.Create("stinulator-a*, 1)
nodeB = nest.Create(“neuron-b*, 100)
nodeC = nest_Create(*recorder-c*, 1)

Connect nodes
nest.Connect (nodeA, nodeB, syn spec={
“weight™: 10.0,
“delay": 1.
n
nest. Connect (node8, nodeC, syn spec={
“weight™: 1.0,
“delay": 1.
»n

Run_sinulation
nest. Simulate(1000.

Collect events

response = {
“kernel
=panardes

lest . GetKernelStatus ("tine")},

Nt

it

Y1 s e

_static/img/gif/activity-anim-graph.gif

_static/img/screenshots/controller/activity-graph-panels-analog.png
£ ANALOG SIGNALS
Recorded events

+ ADD PANEL

displayed |
dsplayed inee

O average line

O spike threshold

55

10

_static/img/screenshots/controller/activity-anim-controller-analog.png
“« <« a9 1nm»o»>r »

Cunengime (ms)

Frame rate
ramerate (ps) g e

VM1 VOLTMETER °

‘Select geometry model

box geometry -
Recorded events

‘membrane potential (mV) e

min (mV) max (mV)
70 spectral ~ 55000

——
O Reverse colormap

Object size ° R
Object opacity .
et 1
Box style

O Flatten height
O Flying planes

a
kG

_static/img/screenshots/controller/activity-stats.png
PN Spikes
2 16
3 10
4 1
5 12
6 n
7 15
8 16
9 12
10 13
n 15
12 n
13 12
1 1
15 13
16 1
Al =127

SR1

Rows per page:

SPIKE RECORDER

1S mean
63.19
8243
69.37
83.26
78.70
59.65
58.25
81.25
7283
66.66
92.80
8298
7184
7465
62.48

p=7560

5 -

Isistd
28.40
2971
3449
4481
37.35
3509
3333
5261
37.73
4091
7731
57.30
3500
51.23
4478

p=4538

1150f100

cv(s)
045
036
050
054
047
059
057
065
052
061
083
069
049
069
072

p=059

a
o
Network

ig

<P

Cote

B
s

_static/img/screenshots/controller/activity-graph-panels-spike.png
| SPIKE TIMES

It SPIKE TIMES

bin size (ms)

5 10 2

_static/img/screenshots/controller/compartmental-neuron-step1.png
Compartments

(soma1 @)[dendiite 1 @ [denarite2 @] +

capacitance of the compartment 10pF
coupling conductance with parent 0
‘compartment ns

leak conductance of the compartment 1ns

leak reversal of the compartment 70mv
sodium maximal conductance ons [
sodium reversal somv [
potassium maximal conductance ons [
potassium reversal smv [

Receptors in soma 1

+

GABA reversal -80mv

[m]

GABA rise time 0.2ms

[m]

_images/tsodyks-synapse-controller.png
N1

TSODYKS SYNAPSE
weight (pA)
u
— o
tau_psc (ms)

tau_fac (ms)
L4

tau_rec (ms)

>

N4

50

05

800

_static/img/screenshots/controller/code-editor.png
4 >

comizr swiare a
1 inport nest Nework
2 inport numpy

4 nest.Resetkernel()

: 2
6 # Set sinulation kernel

7 nest. SetKernelStatus ({

& "local_num_threads": 1,

9 “resolution”: 0.1, <P
10 "rng_seed": 1 Code
1mh

1

3 # Create nodes
14 dcl = nest.Create("dc_generator”, 1, params={
15 “amplitude": 1,

16 “start: 100,

17 “stop": 600,

8 h
19 1
20 "C
21

22 vml = nest.Create(*voltneter”, 1, params={
3 vinterval: 0.1,

24 H

]
-

nest.Create("iaf_psc_alpha’, 1, param
250,

26 # Connect nodes
27 nest.Connect(dcl, n1)
28 nest.Connect (vm, n1)

Run simulation
nest.Sinulate(1000)

response = {
“events": [val.events,]

ERS

}

_static/img/screenshots/activity/activity-chart-graph-spike.png
Neuron 1D

Spike court.

388

20

Time ms]

000

splesctsrt

_images/python-logo.png

_static/img/screenshots/activity/activity-chart-graph-spike-value-histogram.png
Count

count

n

w©

Ed

04

00

%6

Inter-spike Interval [ms]

06 08

wofisi

£

_images/simulation-button.gif
» SIMULATE

H

_static/img/screenshots/activity/activity-explorer.png
PROJECTS ~

spike activity ‘ » SIMULATE v‘

i
Prjct @ -
SR1 SPIKE RECORDER A~ g
+ Spikesof srt Nk
[n::) DA Spikes 1S1 mean Isistd cvs)
Vo 100
2 16 6319 28.40 045
<]
3 10 8243 2071 036 Keme
20 4 14 69.37 3449 050
5 12 83.26 4481 054 <P
cote
6 11 7870 37.35 047
o &
H 7 15 59.65 3509 059
E 8 16 58.25 3333 057 Ay
40 9 12 81.25 5261 065
i)
10 13 7283 3773 052 =
1 15 66.66 4091 061
20
12 11 92.80 7731 083
13 12 8298 57.30 069
o 14 14 7184 35.00 049
o “ 15 13 7465 51.23 069
setnas g * 16 14 62.48 4478 072
3
g Al I=1271 p=7560 p=4538 p=059
® =
2 & 10
Rowsperpage: 15~ 1150100 >
o 800
i
About Time [ms]

_images/settings-insite.png
Insite

In-situ recording backend

URL of Insite access
http://localhost:52056

Please enter the URL where the server of Insite can be found at including protocoll).

_static/img/screenshots/activity/activity-chart-graph-step-input.png
Membrane potential [mv]

36

9985

o7

o998

o

-9

w0

Time (ms]

0

—vmotmt

_images/start-page.png
NEST Desktop

An educational GUI for neuroscience

+ START A NEW PROJECT £ LOAD A PROJECT H

NEST Desktop is a web-based GUI application for NEST Simulator, an advanced
simulation tool for computational neuroscience. The application enables the rapid
construction, parametrization, and instrumentation of neuronal network models.

The primary objective is to provide an accessible classroom tool that allows users to
rapidly explore neuroscience concepts without the need to leam a simulator control
language at the same time.

. EBRAINS Cotunded by

theEuropean Urion

Documentation
Source code

License

n Project

hitps//nestdesktop readthedocs.fo
hitps:/github,comynestdesktop/nest-deskiop
MIT License

310

Sebastian Spreizer

_images/snapcraft-logo.png

_static/img/screenshots/activity/activity-graph-mode.png
EXPLORER

s abstract
Y spatial

_images/activity-chart-graph-spike-value-histogram.png
Count

count

n

w©

Ed

04

00

%6

Inter-spike Interval [ms]

06 08

wofisi

£

_images/activity-chart-graph-spike.png
Neuron 1D

Spike court.

388

20

Time ms]

000

splesctsrt

_images/activity-chart-graph-noise.png
L)

Membrane potentl

count

20 r a0

Time [ms]

£zl n 70 3

Membrane potential [mV]

—— Vmofvm

_images/activity-chart-graph-spike-sender-histogram.png
=

unoa yids

g ®

[sui) i upay

151000

00

Eg

Senders.

_images/activity-chart-graph-step-input.png
Membrane potential [mv]

36

9985

o7

o998

o

-9

w0

Time (ms]

0

—vmotmt

_images/activity-anim-controller-analog.png
“« <« a9 1nm»o»>r »

Cunengime (ms)

Frame rate
ramerate (ps) g e

VM1 VOLTMETER °

‘Select geometry model

box geometry -
Recorded events

‘membrane potential (mV) e

min (mV) max (mV)
70 spectral ~ 55000

——
O Reverse colormap

Object size ° R
Object opacity .
et 1
Box style

O Flatten height
O Flying planes

a
kG

_static/img/screenshots/start-page.png
NEST Desktop

An educational GUI for neuroscience

+ START A NEW PROJECT £ LOAD A PROJECT H

NEST Desktop is a web-based GUI application for NEST Simulator, an advanced
simulation tool for computational neuroscience. The application enables the rapid
construction, parametrization, and instrumentation of neuronal network models.

The primary objective is to provide an accessible classroom tool that allows users to
rapidly explore neuroscience concepts without the need to leam a simulator control
language at the same time.

. EBRAINS Cotunded by

theEuropean Urion

Documentation
Source code

License

n Project

hitps//nestdesktop readthedocs.fo
hitps:/github,comynestdesktop/nest-deskiop
MIT License

310

Sebastian Spreizer

_images/projects-export.png
Export

Select projects to export

Project name
current input
spike input
spike activity
spatial neurons

spatial spike activity

Created at

11/22/2022, 4:50:52 PM

11/22/2022, 4:50:52 PM

11/22/2022, 4:50:52 PM

11/22/2022, 4:50:52 PM

11/22/2022, 4:50:52 PM

Updated at

11/22/2022, 450:52 PM

11/22/2022, 450:52 PM

11/22/2022, 450:52 PM

11/22/2022, 450:52 PM

11/22/2022, 450:52 PM

Validate

v

selected

Activities

CANCEL

_static/img/screenshots/activity/activity-anim-graph-spike.png

_images/project-view.png
PROJ

s + O
Prject
Search project

[o: QIR

Mode! ;
current-input
3 nodes, 2 connec

_static/img/screenshots/activity/activity-anim-graph-analog.png

_images/projects-menu.png
Lo +

Hn =

New project

Reload projects

Export projects

Import projects

Delete projects

Reset ll projects

_static/img/screenshots/activity/activity-chart-graph-spike-sender-histogram.png
=

unoa yids

g ®

[sui) i upay

151000

00

Eg

Senders.

_images/projects-import.png
Import projects
Select source and file

) drive
©) GitHub

@ URL

time constants in cond

Path
) simple_neuron_models

File

cond_time_constants.json

port:

Created at

7/20/2021,11:22:05 AM

Version

32

Valid

CANCEL

Selected

_static/img/screenshots/activity/activity-chart-graph-noise.png
L)

Membrane potentl

count

20 r a0

Time [ms]

£zl n 70 3

Membrane potential [mV]

—— Vmofvm

_static/img/logo/python-logo.png

_static/img/logo/snapcraft-logo.png

_static/img/screenshots/program-overview_expanded.png
]

Soarch pojoct

e oot

.

ot s sy

current input

s
[ES——
o

—

_—

st

waeogro

wn >

>

w g

_static/img/screenshots/nuspic.png
Network » @ Hodgkin-Huxley » | 33 (' 1 month ago) ~ | # Reset | Solution

Nodes
Id Label Targets Status
1 Neuron 3,4,6,7 v_m: -57.7
2 Neuron 3,4,6,7 v_m: -57.5
3 Neuron 4,5,7 -50.1
4 Neuron 1,57 v_m: -73.1
5 Neuron 1,2,7 v_m: -73.1
6 Neuron 4,5,7 V_m: -58.8
7 Spike Detector
8 Voltmeter 1,2,3,4,56
9 Poisson Generator 1,2 start: 200, stop: 1200, rate: 1200
10 Poisson Generator 3,4 start: 800, rate: 1800, stop: 2000
11 AC generator
12 AC generator 4
13 AC generator
Model Poisson Generator
Mean firing rate (Hz) 1200
Enter only positve values.
Start time (ms) 200
Enter only positve values.
End time (ms) 1200
Enter only positve values.
save

Network layout

O)

® Tour

Weights (pA)

1a

10

11

12

1

@ Help

Options

Delays (ms)
2 3
16
16
2
1 1
1

30

30

34

34

"

16

16

Duration (ms) 2000.0

e

Same seed

Overwrite results

Save & simulats

Results

lut Spike Detector L2 Voltmeter

Neuron ID

Spike count

Rate (Hz)

length of simulation

@ Comment | & Like

Raster plot
2 .
3 .
Binwidth 5ms| 10 ms |20 ms| 50 ms| 100 ms
Histogram of population activity
N .
. Il LIkl hn
0 500 1,000 1,500 2,000
Time (ms)
Smoothed histogram of neural activity
50
oS\ \/\\/ VATAY
0 500 1,000 1,500 2,000

_images/v2.4-code-editor.png
Neuron ID

Spike count.

i

Time [ms]

» Simuate

kemel models nodes connections events >

1
2
3
4
5
6
7
8

45
46+
a7

anl

import nest
import numpy as np

nest.ResetKernel()

Sinulation kernel
np. random. seed (6)
nest. SetKernelStatus ({
ocal
“resolution”
“rng_seeds”: np.random. randint(9, 1000, 1).tolist()
n

Copy models

nest.CopyModel (*poisson_generator”, *stimulator-a
“rate": 6500

n

hest.CopyModel ("iaf psc_alpha”, "neuron-

nest . CopyModel ("spike detector®, "recorder-c*)

Create nodes
nodeA = nest.Create("stinulator-a*, 1)
nodeB = nest.Create(“neuron-b*, 100)
nodeC = nest_Create(*recorder-c*, 1)

Connect nodes
nest.Connect (nodeA, nodeB, syn spec={
“weight™: 10.0,
“delay": 1.
n
nest. Connect (node8, nodeC, syn spec={
“weight™: 1.0,
“delay": 1.
»n

Run_sinulation
nest. Simulate(1000.

Collect events

response = {
“kernel
=panardes

lest . GetKernelStatus ("tine")},

Nt

it

Y1 s e

_static/img/screenshots/model/model-toolbar.png

_static/img/screenshots/model/model-nav.png
a
oxZ
Prject

(SN2

Search model

= 8 nstalled @

14 models
rator

ac_gener
@ stimulator

de_generator
@ stmulator

hh_psc_alpha
@ neuron

80

80

80

_images/v2.5-network_editor.png
. ‘} Spike activity » Simulate

Al Stimulator Newron Recorder
a

@ Poisson generator (pg)

Mean firing rate 6500 Hz

Starttime oms

Stop time 10000 ms]

1AF psc alpha

Capacitance of the membrane 250 pF [
Leak reversal potential Fomv
Constant external input current opad
Initial membrane potential Fomv
Reset potential of the membrane Fomv
Spike threshold ssmv [
Duration of refractory period 2ms [J
Membrane time constant 10ms O]

Time constant of the excitatory synapse 2 ms []

2ms]

Vo £ Spike detector (sd) -

Time constant of the inhibitory synapse

O,

‘Synaptic weight

_static/img/screenshots/model/models-import.png
Import models

Select a source

) Import from GitHub ~ ~

Select elementtype Select fle

() newon ~ aeif_condjson

4models found. Select models to import

Model

aeif_cond_alpha

aeif_cond_alpha_multisynapse

aeif_cond_beta_multisynapse

aeif_cond_exp

Label

AEIF cond alpha

AEIF cond alpha multisynapse

AEIF cond beta multisynapse

AEIF cond exp

Version

Valid Selected

AN NN

CANCEL IMPORT

_images/v2.4-lab_book.png
A

A e ccuvy secag Poisson generator -

+ Newnetwork <
Spieactty x [© _
Q sechsimiaton ®

curentous - =
- o

Spatal newrons L™ 65000 Hz | Comectiontype

¢ e

Spatal spke activty eses 1AF psc alpha -

Connection ype

A

‘Spike detector

_static/img/screenshots/model/models-filter-tag.png
8
(9}

Nofilter tag

Installed

GitHub

Neuron

Recorder

stimulator

Synapse

_images/v3.0-lab_book.png
Q

=

s

+ Newproject

Spike activity

B00K

x B

Q Search project

Current input
3 nodes, 2 connections

‘Spike input
3 nodes, 2 connections

Spike activity
3 nodes, 2 connections

Spatial neurons
3nodes, 2 connections

‘Spatial spike activity
3 nodes, 2 connections

mean firing rate
N1

SR1

POISSON GENERATOR

6500.0 Hz

IAF PSC ALPHA

SPIKE RECORDER

synaptic weight

> SIMULATE

10.0 pA

_static/img/screenshots/network/network-editor.png
2P
oA, i i -
e & spike activity ‘ > SIMULATE ‘

mE | e & [e] o =
PGl POISSON GENERATOR et
I
populggon size |
-
‘mean firing rate (Hz) Kemel
6500
N1 IAF PSC ALPHA >
. cote
populstiongize o0
SR1 SPIKE RECORDER
PG1 2 N1
@ ﬂ ‘connection rule B
alltoall v e
n N1 2 SR1
connection rule
alltoall -
o
fd
Setngs
Hep

P~

_images/v2.5-spike_activity.png
Neuron ID

Spike count

100

80

60

a0

20

Spike activity

a0

20

20

10

200

Time [ms]

1000

Spikes of sd1

Al Stimulator Neuron

@ Poisson generator (pg)

Population size

Mean firing rate (Hz)

Alltoall

‘Synaptic weight (pA)

"_—'I -

Alltoall

» Simulate

Recorder

6500

_static/img/screenshots/model/models-menu.png
MODEL!

e3

B o

Hn =

Reload models.

Export models

Import models,

Delete models

Reset all models

_images/v3.0-spike_activity.png
> SIMULATE

@ Q ALL NEURON STIMULATOR RECORDER CUSTOM

s

o &

. Spkesofsnt POISSON GENERATOR
100 gopu\auon size -
mean firing rate (Hz) &
6500
80 IAF PSC ALPHA
population size
e s
o SR1 SPIKE RECORDER
§
5
2 L4
0 onnection e
alltoall -
ti ht (pA)
synaptic weight (pA) »
20 >
o
0
g
E
2 2
2w I
@ b 200 200 600 800 1000
i Time [ms]

_static/img/screenshots/network/neuron-shapes.png
4
[o}—(

_images/v3.0-model_view.png
2 ¥ Q search model iaf_psc_alpha - Leaky integrate-and-fire neuron model

=

Mo ac_generator Descri
dc_generator
a *“iaf psc alpha’® is an implementation of a leaky integrate-and-fire model
ih.psc._slpha with alpha-function shaped synaptic currents. Thus, synaptic currents
{at_cond_alpha and the resulting postsynaptic potentials have a finite rise time.
i The threshold crossing is followed by an absolute refractory period
during which the membrane potential is clamped to the resting potential.
multimeter

The linear subthreshold dynamics is integrated by the Exact
noise_generator Integration scheme [1] . The neuron dynamics is solved on the time
grid given by the computation step size. Incoming as well as emitted

parrot_neuron spikes are forced to that grid.
pel An additional state variable and the corresponding differential
spike_generator equation represents a piecewise constant external current.
spike_recorder The general framework for the consistent formulation of systems with
neuron Like dynamics interacting by point events is described in

static_synapse [1]_. A flow chart can be found in [2] .
step_current_generator Critical tests for the formulation of the neuron model are the

eter comparisons of simulation results for different computation step

sizes and the testsuite contains a number of such tests.

The *“iaf psc alpha'® is the standard model used to check the consistency
of the nest simulation kernel because it is at the same time complex
enough to exhibit non-trivial dynamics and simple enough compute

relevant measures analytically.

note::

i~ 0 e

_static/img/screenshots/network/network-graph.png

_images/v2.2-lab_book.png
+

A

New network

Spike actviy x D]
List of saved simulations o

Q Search simulation

Currentinput 2secag0
Spike input 2secag0
Poisson generator
Spike activity 2secag0
Mean firing rate 65000 Hz Connection rle.
‘Spatal neurons 2seco0 | starttime 00ms ‘Synaptic model
Stoptime 100000 ms ‘Synaptic weight
‘Spatial spike activity 2secag0
‘Synaptic delay

1AF psc alpha

Capacitance of the membrane 250.0 pF
Leak reversal potential 70.0mv

Connection rule:

‘Gonstant external input current 00pA | Synaptic model
Inital membrane potential 700mv | Synaptic weight
Reset potential of the membrane 700mv | Synapic delay

Spike threshold 55.0mV

Duration of refractory period 20ms.
Membrane time constant 100ms
Rise time of the excitatory synaptic alpha function 20ms.

Rise time of the inhibitory synaptic alpha function 20ms.

Spike detector

all_to_al
static_synapse
100 pA
10ms

all_to_al
static_synapse
10 pA
10ms

_static/img/screenshots/model/model-explorer-projects.png
EXPLORER

[~

P RRKRR

step current (up/down)

current steps

spikes (up/down)

regular spikes steps

Polsson spikes steps.

spike activity

_images/v2.1-spatial_activity.png
Frame Rate

Time step

ootsize

S o — 0

Time window size

— ms

Trail

off -

el ength

o oms

0] e fading

camera

Camers Pasiton x

1

Camers Pasitony

Camers Positonz

Camera motion

Camera spase

Camersotstion theta

_static/img/screenshots/model/model-editor.png
. alternating curre

label
alternating current

Recordables: 1

id value unit label input input specifications
mn o max s
amplitude PA Amplitude of sine current valuesli. ~ -1000 1000 1
mn o omax sep
frequency 0 Hz frequency valuesli. ~ 0 100 1
mn o omax sep
offset 0 PA constant amplitude offset valuesli. ~ 0 1000 1
mn omax step
phase 0 deg phase of sine current valiesli. ~ 0 360 1
mn omax s
start 0 ms starttime valuesli. ~ 0 1000 1
mn o omax sep
stop 1000 ms stop time valuesli. ~ 0 1000 1

UPDATE MODEL FROM GITHUB.

_images/v2.2-spike_activity.png
m “ Spike activity Simulate

& Al Stimulator Neuron Recorder 3
Spike activity isson generator
~
Y Population size
100 O
Mean firing rate (Hz)
v %
g
. 1AF psc alpha
. psc alp!
F Population size
70 *
60
=]
<
2
£ s
g
2
0 Alltoal
» Static synapse
‘Synaptic weight (pA)
20
‘Synaptic delay (ms)
10
L 2
5
g
5 |||
* | A S A
il | A
0 200 0 600 80 1000

Time [ms] (S

_images/v2.2-network_editor.png
- ‘} » Spike activity Simulate

A

Al stimulator Neuron Recorder 3

Poisson generator

Population size

Mean rng rate: He
Starttime ms

Stop time

1AF psc alpha

Population size
100

Capacitance of the membrane oF

Leak reversal potential mv
Constant extemal input current oA
Initial membrane potential mv
Reset potentiel of the membrane mv
Spike threshold mv
Duration o refractory period ms
Membrane time constant ms

Rise time of the excitatory synaptic alpha fun... ms

o o e o o o o R R

Rise time of the inhibitory synaptic alpha func...ms

Spike detector

Star time ms O

ms O

Stop time

_static/img/screenshots/model/model-explorer.png
-60.04

-60.96

-60.08

Membrane potential [mV]
3

7002

7004

7006

100

400

500

Time [ms]

700

800

> SIMULATE

_static/img/screenshots/controller/kernel-settings.png
SIMULATION KERNEL
local number of threads
® .

1 2
simulation resolution (ms)
e

001 01

seed ofghe random number generator

O randomize seed

SIMULATION

simulaton time (ms) g

0

1000

<P

Coe

]
=

_images/v1.5-neuronal_activity.png
<

© a Simulate

A+ Neuronal states

Q# stimulator Neuron Recorder

Rise time of the excitatory synaptic alpha fun... 2 ms.

Rise time of the inhibitory synaptic alpha func...2 ms.

3 Voltmeter -

— o
ANIRINO)

I .

Time [ms]

_static/img/screenshots/external/code-editor-toolbar-insite.png
8 v =] o e
1 import nest
2 import numpy

4 nest.ResetKernel()

5

6 try:

7 nest.Install("insitemodule’)
& except:

9 pass

>

_images/v1.5-lab_book.png
Neuronal states

Details Description

PN

Starttime
Stop time

@) v

Capacitance of the membrane
Leak reversal potential
Constant external input current

Initial membrane potential

Reset Potential of the membrane

Spike threshold

Duration of effactory period

Membrane time constant

Rise time of the excitatory synaptic alpha function
Rise time of the inhibitory synaptic alpha function

3 | Voltmeter

Time interval of recording
Starttime
Stop time

+»

Python script Raw view

m
10.0Hz

0oms
10000ms.

(10)

250.0pF
700mv
00pA
700mv
700mv
550mV
20ms
100ms
20ms
20ms

m

01ms
0oms
10000ms.

Comment

Connection rule
Synapse model
Synapse weight

Synapse delay

DRNO;
ot

Synapse delay

Simulate

allto_all
static_synapse
1.0pA
1.0ms

allto_all
static_synapse
1.0pA
1.0ms

_static/img/screenshots/controller/network-controller.png
o & [e] o ©
nc1 DIRECT CURRENT et
I
populggon size |
-
ampliuge of curent (pA)g | Kemel
‘start time fns) T
=8 100 &
stop time (ms) Code.
] 00
N1 IAF PSC ALPHA
I
popuiggon size |
ity of the b i
‘capacity of the membrane(pF) 50 =
— S
VM1 VOLTMETER
time interval of recording (ms)
e . .
oo 01 1 10
| pc1 3 N1
| VM1 3 N1

_images/v2.0-lab_book.png
B N L | A 2

Qearch simulation

Spike trains
Spike input

Current input

1 second ago

1 second ago

o

b Poisson generator 1)

Mean firing rate
Starttime
Stop time

Capacitance of the membrane.
Leak reversal potential

Constant external nput current

Initial membrane potential

Reset potential of the membrane

Spike threshold

Duration o refractory period

Membrane time constant.

Rise time of the excitatory synaptic apha function

Rise time of the inhibitory synaptic alpha function

Starttime

Stop time

o 1AF psc alpha)

n Spike detector m

Connection ule
Synapse model
Synapse weight
Synapse delay

Connection rule

Synapse model
Synapse weight
Synapse delay

alLto_al
statc_synapse
100 pA
10ms

alLto_al
statc_synapse
10 A
10ms

_static/img/screenshots/external/nest-desktop-visimpl.png
B NESTDesktop

PROJECTS ~

5
oKL

EDITOR

RER

a@ s s E

[v &

1 import nest
2 inport numpy

4 nest.Resetkernel ()

6 try:
7 nest.Install('insitemodule')
except:

pass

10
11 # set sinulation kernel
12 nest.SetKernelstatus({

13 "local num_threads": 1,
“resolution”: 1,
“rng_seed": 1

b

Create nodes
nl = nest.Create("iaf_psc_alpha", 800, params={
}, positions= nest.spatial.free(
nest. randon.uniforn(-0.5, 0.5),
nun_dinensions=3
)

2/)

5 n2 = nest.Create("iaf_psc_alpha’, 200, params={
26 1, positions= nest.spatial.free(

nest. randon.uniforn(-0.5, 0.5),
nun_dinensions=3

2)

30))

31 pgl = nest.Create("poisson_generator”, 1, params={
“rate": 68000,

EED)]

34 srl = nest.Create("spike_recorder”, 1, params={

35 “record_to": “insite’,

6 h

37 sr2 = nest.Create("spike_recorder”, 1, params={
“record_to": "insit

b

40
41 # Copy synapse models

42 nest.CopyModel (*static_synapse", "Excitatory”, params={
43 "weight': 2,

b

nest.CopyModel (“static_synapse’, “Inhibitory", params={
“weight": -8,

b

Connect nodes

nest. Connect(n1, nl, conn_spe
“rule": "pairwise_bernoulli®,
“pr: 0.2,

Kemel

<>

Cote

ey

=

File Options

Stackviz Tools Help

BEEmBE W X DE o

‘ A
P—

Q

i\|ﬂu|h\h|i|llmlﬂiu|||l\ |IﬂM\I\||\|\hﬂ|\llﬂl

simPart

| A

®
Selection | Groups | Attribute
Current visualization groups
Import from... Clear
Load Save
Subset 0 x
v active
#800
Subset 1 x
v active
#200
Playback Configuration
‘Simulation playback Configuration
‘Simulation timestep: 100000 [+
Timesteps per second: 20,00000 |+
Step playback duration (s): 5,000 P
Visual Configuration
Selection
e
®
t=428.124 | 854|
0
#4000

Playat...

_images/v1.5-spike_activity.png
< @ @a Simulate
Spike trains.
U,

Rise time of the excitatory synaptic alpha fun... 2 ms

Rise time of the inhibitory synaptic alpha func...2 ms

3| Spike detector -
Starttime oms
Stop time 1000 ms
VANERINO)}
Altoall ~
Static synapse ~

Synaptic weight 10 pA

_static/img/screenshots/external/nest-desktop-nrp.png
Az NRP Husky Braitenberg Spikes
Proct

[n:] 10

Vol

R R
L
T

OLERTE R T
fLL

Neuron ID

-

B
Settnge

| spikesofsrt

Fen

1500 2000 2500 3000 3500 4000

sbout

Brain Editor x

Brain Editor

® 0 e

Populations

» sensors,
» actors
» record

Simutstion time: 09 60:00:0

Reaitime: 00 00:00:05 nrpuser
Reaitineout 0 00113:14)
Fo

This file contains the setup of the neuronal ne
image recognition

pragma: no cover

7 import nest

__author__ = 'LorenzoVannucci

nodes = nest.GetNodes ()
circuit = nodes[:8]

populations = {"circuit": circuit}

_images/v2.0-spike_activity.png
o G Q+iie Al Stimulator Neuron Recorder
Spike activity Poisson generator
v
Population size 1
@ 6500 Hz.
100
° 1AF psc alpha
Population size 100
20
All to all
o ®
<
§ Static synapse
5
g
z Synaptic weight
0
Synaptic delay
n -
2 Alltoall
Static synapse
N Synaptic weight
Synaptic delay
20
5 15
8
g 1w
P L)
0 200 400 600 800 1000

Time [ms]

_static/img/screenshots/model/model-doc.png
alternating current

ac_generator — Produce an alternating current (AC) input

ac_generator - Produce an alternating current (AC) input

Description
This device produces an AC input sent by CurrentEvents. The current is given by

1(1) = offset + amplitude - sin(w? + ¢)
where

= 27 - frequency
_ phase
(T

Al stimulation devices share the parameters start and stop, which control the stimulation period. The property origin is a
global offset that shifts the stimulation period. Al three values are set as times in ms.

_images/v2.0-network_editor.png
ike trains

X B ©

Al Stimulator Neuron Recorder

» Poisson generator

Population ize 1
Spatal [m]
Mean fring rate ™
Starttime ms

Stop time

° 1AF psc alpha

Population size 100
Spatal [m]
Capacitance of the membrane o O
Leak eversal potential w0
Constant exteral nput current o O
Initil membrane potential w0
Reset potential of the membrane w0
Spike threshold w0
Duraion ofrefractory period ms O
Membrane time constant ms O
Rise time ofthe exctatory synaptic alpha func.ms (]
Rise time of the inibitory synaptic alpha func.. ms (]

n Spike detector

Sarme

sop e

u -
Comection e

Synaptic model
Synaptic weightpA

Synaptic delayms

_static/img/screenshots/external/settings-insite.png
Insite

In-situ recording backend

URL of Insite access
http://localhost:52056

Please enter the URL where the server of Insite can be found at including protocoll).

_static/img/screenshots/controller/copy-model-step1.png
[l do O o @ &

AL NEURON STIMULATOR RECORDER MODEL CUSTOM

iaf_psc_alpha - COPY

iaf_cond_exp_sfa_rr
iaf_psc_alpha
iaf_psc_alpha_canon
iaf_psc_alpha_multisynapse
iaf_psc_alpha_ps
iaf_psc_delta

iaf_psc_delta_ps

_static/img/screenshots/controller/compartmental-neuron-step2.png
N1 COMPARTMENTAL NEURON

populagon size

spike threshold nV)
reshollg 50

Compartments
(snma1 Q)\ dendrite 1 @ |(dendrite2 @ |

capacitangg of the compartment (pF)

10

coupling conductance with parent compartment (1S)
0

leak conductance of the compartment (ngg
1

leak reversggof the compartment (mV)

Receptors in soma 1

_images/v0.15.3-neuronal_activity.png
NEST Desktop

-

Neuronal state activity

N

10/14/2022, 9:11:22 AM
¥ Autoscale

NN N\ N NG NG N

N

®
O,
®

Al
7
7

N

S

S o

Nodes Connections

Model

1AF psc alpha

Population size

)

Model

Poisson generator

Population size

o

Mean firing rate (Hz)
Model

Voltmeter

Data series

stack
Subchart

No chart

2 £

Synapses

10

_static/img/screenshots/controller/copy-model-step3.png
N1
populatiopgsize

N2

populaiggn size

BRUNEL

BRUNEL

_static/img/screenshots/controller/copy-model-step2.png
IAF_PSC_ALPHA

New label
brunel

capacity of the membragg (oF)

leak reversal potential ()

constant external input gurrent (pA)
initial membrane. pmenw (mV)

reset potential of the megbrane (mV)
spike threshold (mV) o
duration of refractorgperiod (ms)
‘membrane time constant mﬁ

time consignt of the excitatory synapse (ms)

time consignt of the inhibitory synapse (ms)

250

05

05

_images/v0.15.3-spike_activity.png
NEST Desktop

Spike activity ~ 10/14/2022, 9:10:25 AM P S

0

- @/ Autoscale

H Nodes ~Connections Synapses =~

H

2 @ Model
1AF psc alpha v
Model
Poisson generator v
Population size

. .. o .

N o . . @_\ /@ o Mean firing rate (Hz) oo

Model

L . L Spike detector vV
. PR . P Number of histogram bins
1 10 20 50 100 200
154 e e e PP . P .. . Subchart
. . . e e e e e - No chart v
. . e Subchart data
. e . . Peri-stimulus time histogram (P v
Ordinate of PSTH
Spike g v
20 e e e e . . . - .« . pike count

[100 200 300 400 500 600 700 800 900 1,000

_images/activity-graph-panels-analog.png
£ ANALOG SIGNALS
Recorded events

+ ADD PANEL

displayed |
dsplayed inee

O average line

O spike threshold

55

10

_images/activity-graph-panels-spike.png
| SPIKE TIMES

It SPIKE TIMES

bin size (ms)

5 10 2

_images/activity-explorer.png
PROJECTS ~

spike activity ‘ » SIMULATE v‘

i
Prjct @ -
SR1 SPIKE RECORDER A~ g
+ Spikesof srt Nk
[n::) DA Spikes 1S1 mean Isistd cvs)
Vo 100
2 16 6319 28.40 045
<]
3 10 8243 2071 036 Keme
20 4 14 69.37 3449 050
5 12 83.26 4481 054 <P
cote
6 11 7870 37.35 047
o &
H 7 15 59.65 3509 059
E 8 16 58.25 3333 057 Ay
40 9 12 81.25 5261 065
i)
10 13 7283 3773 052 =
1 15 66.66 4091 061
20
12 11 92.80 7731 083
13 12 8298 57.30 069
o 14 14 7184 35.00 049
o “ 15 13 7465 51.23 069
setnas g * 16 14 62.48 4478 072
3
g Al I=1271 p=7560 p=4538 p=059
® =
2 & 10
Rowsperpage: 15~ 1150100 >
o 800
i
About Time [ms]

_images/activity-graph-mode.png
EXPLORER

s abstract
Y spatial

_images/anim-spike-activity.gif

_images/activity-stats.png
PN Spikes
2 16
3 10
4 1
5 12
6 n
7 15
8 16
9 12
10 13
n 15
12 n
13 12
1 1
15 13
16 1
Al =127

SR1

Rows per page:

SPIKE RECORDER

1S mean
63.19
8243
69.37
83.26
78.70
59.65
58.25
81.25
7283
66.66
92.80
8298
7184
7465
62.48

p=7560

5 -

Isistd
28.40
2971
3449
4481
37.35
3509
3333
5261
37.73
4091
7731
57.30
3500
51.23
4478

p=4538

1150f100

cv(s)
045
036
050
054
047
059
057
065
052
061
083
069
049
069
072

p=059

a
o
Network

ig

<P

Cote

B
s

_images/anim-analog-signals.gif

_static/img/screenshots/synapse/weight-recorder.png
—— V_mofum1 B

34 # Copy synapse models
-6975 —— V_mofvm2 35 nest.CopyModel (*tsodyks_synapse”, "tsodyks_fac”, params={

3% “weight": 250,

—— V.mofvm3 = R

—— weightsofwr | 8 "faupsc’: 0.3,
39 “tau fac': 53,

—— weightsofwr2 | 40 “"tau_rec": 150,

“weight_recorder”: wrl,
b
nest. CopyModel (“tsodyks_synapse®, *tsodyks_dep”, params={

3

£

“weight_recorder": wr2,
b

8

52 # Connect nodes
2 3 nest.Connect(nl, n4, syn spec="tsodyks dep)
S 0 54 nest.Connect(nl, n2, syn spec={
2 55 “weight": 10,
» 5 h
57 nest.Connect(n1, n3, syn_spec="tsodyks fac")
55 nest.Connect (val, na)
10 59 nest.Connect (vi2, n2)
60 nest.Connect(vn3, n3)
200 400 600 00 61
62 # Run sinulation
Time (ms) = nest.simulate(1000)

_images/apptainer-logo.png

_static/img/thumbnails/compartmental-neuron.png

_static/img/thumbnails/activity-chart-graph.png
a0

20

20

10

200

_static/img/screenshots/releases/v3.1-model_view.png
IAF psc alpha > SIMULATE

&2 ¢ Q Searchmodel
oo

8 Installed @ iaf_psc_alpha newon & MORE
14 models

i

© O Leakyintegrate-and-fire neuron model
de_generator 80 =
Descri Vose!
hh_psc_alpha 80
laf_cond_alpha 8 O ‘jaf psc alpha’’ is an implementation of a leaky integrate-and-fire model :!:
with alpha-function shaped synaptic currents. Thus, synaptic currents
laf_psc_alpha 80 . ! . .
and the resulting postsynaptic potentials have a finite rise time.
‘multimeter 80
The threshold crossing is followed by an absolute refractory period
nolse_generator © O during which the membrane potential is clamped to the resting potential.
parrot_neuron © O | The linear subthreshold dynamics is integrated by the Exact
Integration scheme [1] . The neuron dynamics is solved on the time
poisson_generator © O grid given by the computation step size. Incoming as well as emitted
spikes are forced to that grid.
‘spike_generator 80
<plke.secorder @ o v additional state variable and the corresponding differential
equation represents a piecewise constant external current.
‘static_synapse 80
The general framework for the consistent formulation of systems with
“% step_cument_generator @ O neuron like dynamics interacting by point events is described in
s [1]_. A flow chart can be found in [2] .
voltmeter 80

Critical tests for the fornulation of the neuron model are the
comparisons of simulation results for different computation step
sizes and the testsuite contains a number of such tests.

HS)

The "“iaf psc alpha'’ is the standard model used to check the consistency
of the nest simulation kernel because it is at the same time complex
S S S S S

i

_static/img/screenshots/releases/v3.1-lab_book.png
HEs

=]

+ Newproject
spike activity

Q Search project

current input
3 nodes, 2 connections.

spike input

3 nodes, 2 connections.

spike activity
3nodes, 2 connections

spatial neurons
3nodes, 2 connections

spatial spike activity
3nodes, 2 connections

PGl
mean firing rate
N1

SR1

spike activity

POISSON GENERATOR

6500 Hz

IAF PSC ALPHA

SPIKE RECORDER

PG1
synaptic weight

N1

SIMULATE

N1
10pA

SR1

Kemel

<P

coe

_static/img/screenshots/releases/v3.1-spike_activity.png
EXPLORER spike activity > SIMULATE

i
(o weser) + ADD PANEL | a2
8 * sekesofsrt | 1o SPIKE TIMES Mootk
100
=
Wl SPIKE TIMES .
® bin size (ms) Kemel
s 10 2 s 100 0 50 100
2 e
g Il INTER-SPIKE INTERVAL <&
3 a0 bin size (ms) i i .
1 s 10 » Ell o
? Ll CV OF ISI =3
bin size
N 001 002 005 01 02 05 B
s o
S x
3
S
z 0
o 200 200 600 800 1000
100 Time [ms]
5
s0
% 3
o 50 100 150 200 250 300
® Lo -spike interval [ms]
He 5 10
S s
o 04 0.6 08 1

e

cvofisi

_static/img/screenshots/releases/v3.1-network_editor.png
> SIMULATE

Frot oo ALL NEURON STIMULATOR RECORDER CUSTOM
@ PGl POISSON GENERATOR Nk
lati
- popizgon size |
mean firing rate (Hz) WH
e o 6500 Kame
N1 IAF PSC ALPHA
opulation size <’>
i 100 oo
SR1 SPIKE RECORDER
PG1 2 N1
connection rule E
@ /s / alltoall - =
ht (pA)
m synaptic weight (pA) o
N1 2 SR1
connection rule
alltoall -
Hep
i

_static/img/screenshots/synapse/neuronal-activity-tsodyks.png
-60.86

-60.88

-60.9

[mv]

-60.02

-60.04

Membrane potential

-60.96

-60.08

70—

200 400 600 800

Time [ms]

—— V.mofvm1
—— V_mofvm2

—— V_mofvm3

_static/img/screenshots/synapse/copied-synapse-model.png
TSODYKS_SYNAPSE

New label
tsodyks_fac

‘weight (pA) 250
.
.
g
g v
tau_fac (ms) 530

tauec ()
% 150

weight._recorder
wrl

_static/img/screenshots/synapse/weight-recorder-graph.png

_static/img/screenshots/synapse/tsodyks-synapse-controller.png
N1

TSODYKS SYNAPSE
weight (pA)
u
— o
tau_psc (ms)

tau_fac (ms)
L4

tau_rec (ms)

>

N4

50

05

800

_images/code-editor.png
4 >

comizr swiare a
1 inport nest Nework
2 inport numpy

4 nest.Resetkernel()

: 2
6 # Set sinulation kernel

7 nest. SetKernelStatus ({

& "local_num_threads": 1,

9 “resolution”: 0.1, <P
10 "rng_seed": 1 Code
1mh

1

3 # Create nodes
14 dcl = nest.Create("dc_generator”, 1, params={
15 “amplitude": 1,

16 “start: 100,

17 “stop": 600,

8 h
19 1
20 "C
21

22 vml = nest.Create(*voltneter”, 1, params={
3 vinterval: 0.1,

24 H

]
-

nest.Create("iaf_psc_alpha’, 1, param
250,

26 # Connect nodes
27 nest.Connect(dcl, n1)
28 nest.Connect (vm, n1)

Run simulation
nest.Sinulate(1000)

response = {
“events": [val.events,]

ERS

}

_images/compartmental-neuron-step1.png
Compartments

(soma1 @)[dendiite 1 @ [denarite2 @] +

capacitance of the compartment 10pF
coupling conductance with parent 0
‘compartment ns

leak conductance of the compartment 1ns

leak reversal of the compartment 70mv
sodium maximal conductance ons [
sodium reversal somv [
potassium maximal conductance ons [
potassium reversal smv [

Receptors in soma 1

+

GABA reversal -80mv

[m]

GABA rise time 0.2ms

[m]

_images/code-editor-toolbar-insite.png
8 v =] o e
1 import nest
2 import numpy

4 nest.ResetKernel()

5

6 try:

7 nest.Install("insitemodule’)
& except:

9 pass

>

_images/compartmental-neuron-step2.png
N1 COMPARTMENTAL NEURON

populagon size

spike threshold nV)
reshollg 50

Compartments
(snma1 Q)\ dendrite 1 @ |(dendrite2 @ |

capacitangg of the compartment (pF)

10

coupling conductance with parent compartment (1S)
0

leak conductance of the compartment (ngg
1

leak reversggof the compartment (mV)

Receptors in soma 1

_static/img/screenshots/releases/v3.0-spike_activity.png
> SIMULATE

@ Q ALL NEURON STIMULATOR RECORDER CUSTOM

s

o &

. Spkesofsnt POISSON GENERATOR
100 gopu\auon size -
mean firing rate (Hz) &
6500
80 IAF PSC ALPHA
population size
e s
o SR1 SPIKE RECORDER
§
5
2 L4
0 onnection e
alltoall -
ti ht (pA)
synaptic weight (pA) »
20 >
o
0
g
E
2 2
2w I
@ b 200 200 600 800 1000
i Time [ms]

_static/img/screenshots/releases/v3.0-neuronal_activity.png
Neuronal activity » SIMULATE

o @ ALL| NEURON STIMULATOR RECORDER CUSTOM 4
&)
Spike threshold POISSON GENERATOR
= =)
6997 oz | gPUEten s 1 o
—— V_m average mean firing rate (Hz)
L] 10
-69.975 IAF PSC ALPHA
yopulation size
v w B
E time interval of recording (ms)
—e
% 01 1 10
>
g-eo0ss |
g ‘
s B
5
: >
%
2w
[} 0 0 a0 500
i Time [ms]

_images/concept